skip to main content


Search for: All records

Creators/Authors contains: "Fazel, Maryam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Empirical evidence suggests that for a variety of overparameterized nonlinear models, most notably in neural network training, the growth of the loss around a minimizer strongly impacts its performance. Flat minima—those around which the loss grows slowly—appear to generalize well. This work takes a step towards understanding this phenomenon by focusing on the simplest class of overparameterized nonlinear models: those arising in low-rank matrix recovery. We analyse overparameterized matrix and bilinear sensing, robust principal component analysis, covariance matrix estimation and single hidden layer neural networks with quadratic activation functions. In all cases, we show that flat minima, measured by the trace of the Hessian, exactly recover the ground truth under standard statistical assumptions. For matrix completion, we establish weak recovery, although empirical evidence suggests exact recovery holds here as well. We complete the paper with synthetic experiments that illustrate our findings.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Free, publicly-accessible full text available February 22, 2025
  3. Free, publicly-accessible full text available December 31, 2024
  4. The growing interest in complex decision-making and language modeling problems highlights the importance of sample-efficient learning over very long horizons. This work takes a step in this direction by investigating contextual linear bandits where the current reward depends on at most s prior actions and contexts (not necessarily consecutive), up to a time horizon of h. In order to avoid polynomial dependence on h, we propose new algorithms that leverage sparsity to discover the dependence pattern and arm parameters jointly. We consider both the data-poor (T= h) regimes and derive respective regret upper bounds O(d square-root(sT) +min(q, T) and O( square-root(sdT) ), with sparsity s, feature dimension d, total time horizon T, and q that is adaptive to the reward dependence pattern. Complementing upper bounds, we also show that learning over a single trajectory brings inherent challenges: While the dependence pattern and arm parameters form a rank-1 matrix, circulant matrices are not isometric over rank-1 manifolds and sample complexity indeed benefits from the sparse reward dependence structure. Our results necessitate a new analysis to address long-range temporal dependencies across data and avoid polynomial dependence on the reward horizon h. Specifically, we utilize connections to the restricted isometry property of circulant matrices formed by dependent sub-Gaussian vectors and establish new guarantees that are also of independent interest. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. The problem of controller reduction has a rich history in control theory. Yet, many questions remain open. In particular, there exist very few results on the order reduction of general non-observer based controllers and the subsequent quantification of the closed-loop performance. Recent developments in model-free policy optimization for Linear Quadratic Gaussian (LQG) control have highlighted the importance of this question. In this paper, we first propose a new set of sufficient conditions ensuring that a perturbed controller remains internally stabilizing. Based on this result, we illustrate how to perform order reduction of general (non-observer based) output feedback controllers using balanced truncation and modal truncation. We also provide explicit bounds on the LQG performance of the reduced-order controller. Furthermore, for single-input-single-output (SISO) systems, we introduce a new controller reduction technique by truncating unstable modes. We illustrate our theoretical results with numerical simulations. Our results will serve as valuable tools to design direct policy search algorithms for control problems with partial observations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. Gradient-based methods have been widely used for system design and optimization in diverse application domains. Recently, there has been a renewed interest in studying theoretical properties of these methods in the context of control and reinforcement learning. This article surveys some of the recent developments on policy optimization, a gradient-based iterative approach for feedback control synthesis that has been popularized by successes of reinforcement learning. We take an interdisciplinary perspective in our exposition that connects control theory, reinforcement learning, and large-scale optimization. We review a number of recently developed theoretical results on the optimization landscape, global convergence, and sample complexityof gradient-based methods for various continuous control problems, such as the linear quadratic regulator (LQR), [Formula: see text] control, risk-sensitive control, linear quadratic Gaussian (LQG) control, and output feedback synthesis. In conjunction with these optimization results, we also discuss how direct policy optimization handles stability and robustness concerns in learning-based control, two main desiderata in control engineering. We conclude the survey by pointing out several challenges and opportunities at the intersection of learning and control. 
    more » « less
  9. Berry, Jonathan ; Shmoys, David ; Cowen, Lenore ; Naumann, Uwe (Ed.)
    Continuous DR-submodular functions are a class of functions that satisfy the Diminishing Returns (DR) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject to a convex constraint and have proposed efficient algorithms with approximation guarantees. However, in many applications, e. g., computing the stability number of a graph and mean-field inference for probabilistic log-submodular models, the DR-submodular function has the additional property of being strongly concave along non-negative directions that could be utilized for obtaining faster convergence rates. In this paper, we first introduce and characterize the class of strongly DR-submodular functions and show how such a property implies strong concavity along non-negative directions. Then, we study L-smooth monotone strongly DR-submodular functions that have bounded curvature, and we show how to exploit such additional structure to obtain algorithms with improved approximation guarantees and faster convergence rates for the maximization problem. In particular, we propose the SDRFW algorithm that matches the provably optimal approximation ratio after only iterations, where c ∈ [0,1] and μ ≥ 0 are the curvature and the strong DR-submodularity parameter. Furthermore, we study the Projected Gradient Ascent (PGA) method for this problem and provide a refined analysis of the algorithm with an improved approximation ratio (compared to ½ in prior works) and a linear convergence rate. Given that both algorithms require knowledge of the smoothness parameter L, we provide a novel characterization of L for DR-submodular functions showing that in many cases, computing L could be formulated as a convex optimization problem, i. e., a geometric program, that could be solved efficiently. Experimental results illustrate and validate the efficiency and effectiveness of our algorithms. 
    more » « less