skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Feng, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Geometrically frustrated kagome lattices are raising as novel platforms to engineer correlated topological electron flat bands that are prominent to electronic instabilities. Here, we demonstrate a phonon softening at thekz = πplane in ScV6Sn6. The low energy longitudinal phonon collapses at ~98 K andq = $$\frac{1}{3}\frac{1}{3}\frac{1}{2}$$ 1 3 1 3 1 2 due to the electron-phonon interaction, without the emergence of long-range charge order which sets in at a different propagation vectorqCDW = $$\frac{1}{3}\frac{1}{3}\frac{1}{3}$$ 1 3 1 3 1 3 . Theoretical calculations corroborate the experimental finding to indicate that the leading instability is located at$$\frac{1}{3}\frac{1}{3}\frac{1}{2}$$ 1 3 1 3 1 2 of a rather flat mode. We relate the phonon renormalization to the orbital-resolved susceptibility of the trigonal Sn atoms and explain the approximately flat phonon dispersion. Our data report the first example of the collapse of a kagome bosonic mode and promote the 166 compounds of kagomes as primary candidates to explore correlated flat phonon-topological flat electron physics. 
    more » « less
  2. This paper is concerned with the mathematical analysis of an inverse random source problem for the time fractional diffusion equation, where the source is driven by a fractional Brownian motion. Given the random source, the direct problem is to study the stochastic time fractional diffusion equation. The inverse problem is to determine the statistical properties of the source from the expectation and variance of the final time data. For the direct problem, we show that it is well-posed and has a unique mild solution under a certain condition. For the inverse problem, the uniqueness is proved and the instability is characterized. The major ingredients of the analysis are based on the properties of the Mittag–Leffler function and the stochastic integrals associated with the fractional Brownian motion. 
    more » « less
  3. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today's IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today's IoT-based attacks. 
    more » « less
  4. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today’s IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today’s IoT-based attacks. 
    more » « less