skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Fialko, Yuri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrologic loads can stimulate seismicity in the Earth’s crust1. However, evidence for the triggering of large earthquakes remains elusive. The southern San Andreas Fault (SSAF) in Southern California lies next to the Salton Sea2, a remnant of ancient Lake Cahuilla that periodically filled and desiccated over the past millennium3,4,5. Here we use new geologic and palaeoseismic data to demonstrate that the past six major earthquakes on the SSAF probably occurred during highstands of Lake Cahuilla5,6. To investigate possible causal relationships, we computed time-dependent Coulomb stress changes7,8 due to variations in the lake level. Using a fully coupled model of a poroelastic crust9,10,11 overlying a viscoelastic mantle12,13, we find that hydrologic loads increased Coulomb stress on the SSAF by several hundred kilopascals and fault-stressing rates by more than a factor of 2, which is probably sufficient for earthquake triggering7,8. The destabilizing effects of lake inundation are enhanced by a nonvertical fault dip14,15,16,17, the presence of a fault damage zone18,19 and lateral pore-pressure diffusion20,21. Our model may be applicable to other regions in which hydrologic loading, either natural8,22 or anthropogenic1,23, was associated with substantial seismicity. 
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  2. The destructive 2023 moment magnitude ( M w ) 7.8-7.7 earthquake doublet ruptured multiple segments of the East Anatolian Fault system in Turkey. We integrate multi-scale seismic and space-geodetic observations with multi-fault kinematic inversions and dynamic rupture modeling to unravel the events’ complex rupture history and stress-mediated fault interactions. Our analysis reveals three sub-shear slip episodes during the initial M w 7.8 earthquake with delayed rupture initiation to the southwest. The M w 7.7 event occurred 9 hours later with larger slip and supershear rupture on its western branch. Mechanically consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths, and require a heterogeneous background stress. Our results highlight the importance of combining near- and far-field observations with data-driven and physics-based models for seismic hazard assessment. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    We use Sentinel‐1 and ALOS‐2 Interferometric Synthetic Aperture Radar (InSAR), and Global Navigation Satellite System (GNSS) data to investigate the mechanisms of coseismic and postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake. We present a refined coseismic slip model constrained by the rupture trace and precisely located aftershocks. The InSAR time series corrected for the atmospheric and decorrelation noise reveal postseismic line of sight displacements up to ∼0.1 m. The displacements are discontinuous along the fault trace, indicating shallow afterslip and velocity‐strengthening friction in the top 2–3 km of the upper crust. The magnitude of shallow afterslip is however insufficient to compensate for the coseismic slip deficit, implying substantial off‐fault yielding. The observed surface deformation does not exhibit obvious features that could be attributed to poroelastic effects. We developed a fully coupled model that accounts for both stress‐driven creep on a deep localized shear zone and viscoelastic relaxation in the bulk of the lower crust. The mid‐ to near‐field data can be reasonably well explained by deep afterslip and/or non‐Maxwellian visco‐elasticity. Our results suggest a power‐law stress exponent of ∼4–4.5 assuming a power‐law rheology, and transient and steady‐state viscosities of 1018and 1019 Pa s, respectively, assuming a bi‐viscous (Burgers) rheology. However, a good fit to the GNSS data cannot be achieved assuming the bulk viscoelastic relaxation alone, and requires a contribution of deep afterlip and/or a localized shear zone extending through much of the lower crust.

    more » « less
  4. Abstract

    Landslides commonly occur in areas with steep topography and abundant precipitation and pose a significant hazard to local communities. Some of the largest known landslides occur in Alaska, including several that caused local tsunamis. Many landslides may have gone undetected in remote areas due to lack of observations. Here, we develop a semiautomated workflow using both seismic and geodetic observations to detect, locate, validate, and characterize landslides in Alaska. Seismic observations have shown promise in continuously monitoring landslide occurrence, while remote sensing techniques are well suited for verification and high‐resolution imaging of landslides. We validate our procedure using the 28 June 2016, Lamplugh Glacier landslide. We also present observations of a previously unknown landslide occurred on 22 September 2017 in the Wrangell Mountains region. The Wrangell Mountains landslide generated a coherent surface wavefield recorded across Alaska and the contiguous United States. We used Sentinel‐1 Synthetic Aperture Radar and Sentinel‐2 optical imagery to map the respective mass deposit. To investigate the landslide dynamics, we inverted regional seismic surface wave data for a centroid single force failure model. Our model suggests that the Wrangell Mountains landslide lasted for about 140 s and had two subevents involving at least five distinct stages. We estimate that the landslide had displaced 3.1–13.4 million tons of rocks over a distance of ∼2 km. Our results suggest that combining seismic and geodetic observations can vastly improve the detection and characterization of landslides in remote areas in Alaska and elsewhere, providing new insights into the landslide dynamics.

    more » « less
  5. Abstract We discuss general structural features of the Banning and Mission Creek strands (BF and MCF) of the southern San Andreas fault (SSAF) in the Coachella Valley, based on ambient noise and earthquake wavefields recorded by a seismic array with >300 nodes. Earthquake P arrivals show rapid changes in waveform characteristics over 20–40 m zones that coincide with the surface BF and MCF. These variations indicate that the BF and MCF are high-impedance contrast interfaces—an observation supported by the presence of seismic reflections. Another prominent but more diffuse change in SSAF structure is found ∼1 km northeast of the BF. This feature has average-to-low arrival times (P and S) and ambient noise levels (at <30 Hz), and likely represents a relatively fast velocity block sandwiched between broader MCF and BF zones. The maximal arrival delays (P ∼0.1 s and S ∼0.25 s) and the highest ambient noise levels (>2 times median) are consistently observed southwest of the BF—a combined effect of Coachella Valley sediments and rock damage on that side. Immediately northeast of the MCF, large S minus P delays suggest a broad high VP/VS zone associated with asymmetric rock damage across the SSAF. This general overview shows the BF and MCF as mature but distinctly different fault zones. Future analyses will further clarify these and other SSAF features in greater detail. 
    more » « less
  6. ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture. 
    more » « less
  7. Abstract

    The Southern San Andreas Fault (SSAF) in California is one of the most thoroughly studied faults in the world, but its configuration at seismogenic depths remains enigmatic in the Coachella Valley. We use a combination of space geodetic and seismic observations to demonstrate that the relatively straight southernmost section of the SSAF, between Thousand Palms and Bombay Beach, is dipping to the northeast at 60–80° throughout the upper crust (<10 km), including the shallow aseismic layer. We constrain the fault attitude in the top 2–3 km using inversions of surface displacements associated with shallow creep, and seismic data from a dense nodal array crossing the fault trace near Thousand Palms. The data inversions show that the shallow dipping structure connects with clusters of seismicity at depth, indicating a continuous throughgoing fault surface. The dipping fault geometry has important implications for the long‐term fault slip rate, the intensity of ground shaking during future large earthquakes, and the effective strength of the southern SAF.

    more » « less
  8. Abstract

    The 2021 Maduo earthquake ruptured a 150 km‐long left‐lateral fault in the northeast Tibet. We used Synthetic Aperture Radar data collected by the Sentinel‐1A/B satellites within days of the earthquake to derive a finite fault model and investigate the details of slip distribution with depth. We generated coseismic interferograms and pixel offsets from different look directions corresponding to the ascending and descending satellite orbits. At the eastern end the rupture bifurcated into two sub‐parallel strands, with larger slip on the northern strand. Inversions of coseismic displacements show maximum slip to the east of the epicenter. The averaged coseismic slip has a peak at depth of 3–4 km, similar to slip distributions of a number of shallow strike‐slip earthquakes. Postseismic observations over several weeks following the Maduo earthquake reveal surface slip with amplitude up to 0.1 m that at least partially eliminated the coseismic slip deficit in the uppermost crust.

    more » « less