skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Frady, Kristin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manufacturing engineers work in teams with a wide range of skills and credentials. Teamwork and collaborative problem solving (CPS) skills enable higher productivity and efficiency. However, these skills are largely absent from engineering education curricula and research in contexts involving multi-educational teams inclusive of technical college engineering students. We address this gap in research and practice through a qualitative case study exploring the contributions, experiences, and perspectives of technical college students working in multi-educational level teams to solve real-world engineering manufacturing problems. Data analyses resulted in six themes: (1) positive team culture, (2) valuing industry skills, (3) sharing responsibilities to iteratively make changes, (4) applying technical roles, (5) peer interactions, and (6) career preparation. Technical college students’ perceptions of challenges and successes are also discussed. Results imply that to effectively promote CPS and teamwork in similar contexts educators and industry leaders should consider the importance of (1) valuing students’/workers’ current professional identities while promoting productive conflict, (2) respecting differing team roles while encouraging skill development, and (3) fostering future career skills. 
    more » « less
  2. Community colleges with their open-access mission, broad accessibility, and lower higher education costs play a vital role in educating and awarding advanced credentials to future engineers, scientists, and technicians. Transfer pathways to engineering are confusing, vague, and complex. Further, many transfer students, who tend to be more diverse, are viewed through a deficit-based perspective where the focus has been on barriers instead of viewing their abilities, skills, talents, and advantages through an asset-based lens. Thus, the purpose of this work-in-progress qualitative study, guided by Laanan’s theory of transfer student capital, is to investigate expert perspectives of assets, factors, and strategies enabling access for two-year college students to engineering transfer pathways. 11 experts, influencers, and programs across the United States participated in semi-structured interviews. Inductive analysis of the interviews resulted in 13 categories that formed four major themes: assets, factors, strategies, and challenges. These results build on prior transfer student research through a focus on practical strategies and tactics used to build transfer student capital for engineering transfer students. Most importantly, these results also highlight a previously missing asset-based perspective of transfer students to shift the lens to strengths-based views and conversations about transfer students. 
    more » « less
  3. null (Ed.)
    This study explored seven engineering graduate students’ collaborative problem-solving (CPS) skills while working in interdisciplinary teams. Students worked in two different teams, in face-to-face and online environments, to solve complex manufacturing design challenges posed by their instructor. The students were assessed using an observational rubric with four dimensions: peer interactions, positive communication, tools and methods and iteration and adaption, and scored via each dimension’s associated attributes, and subsequently interviewed. Six students scored emergent or proficient in CPS and had slightly higher CPS scores during the second observation. One student demonstrated a limited ability for CPS and the observable CPS skills decreased during the project. Interviews revealed the importance of (1) relying on instructor and student chosen technologies for collaborative tasks, (2) recognising and drawing on peer expertise early in the project, (3) building trust during and outside of team meetings and (4) valuing off-site and online collaborative work. Findings advance the understanding of how graduate students working in interdisciplinary teams rely on particular features of collaboration to solve engineering design challenges, which may assist in developing future skills and fostering productive teamwork. 
    more » « less
  4. This NSF funded research study is developing a greater theoretical understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists who are prepared at two-year colleges. The study is identifying dimensions of career anchors orientations at various stages of professional preparation and map to engineering technology (ET) career pathways by surveying ET students, transfer students, and early career ET professionals. The complexity of integration of the multiple stages of professional preparation, within diverse environments, has led the researchers to integrate three interdisciplinary theoretical frameworks to examine fundamental questions of professional formation: (1) social cognitive career theory to situate individual attitudes, interests, and experiences within a larger career context; (2) Schein’s Career Anchors Theory focused on individual career orientations; and (3) the Hughes Value Creation Model for Organizational Competitive Advantage focused on cultural and organizational contexts. Initial results from the Schein’s Career Anchor survey for the two-year college ET students are presented. Findings from this and future work will transform the ET workforce through catalyzing interaction of researchers and practitioners with public support to bolster ET’s strategic position in the workforce development infrastructure. 
    more » « less
  5. null (Ed.)
    The Statewide Coalition Supporting Underrepresented Populations in Precalculus through Organizational Redesign Toward Engineering Diversity (SC:SUPPORTED), a Design and Development Launch Pilot funded under the National Science Foundation INCLUDES program, is a coalition of secondary districts and postsecondary institutions throughout South Carolina that have joined together to address the systemic issue of mathematics preparation and placement for students pursuing or intending to pursue engineering degrees. In Year One of the project, we used individual data for all 21,656 first-year STEM-intending students enrolled in a public two- or four-year postsecondary institution with ABET-accredited engineering programs in the state to identify specific pathways with high rates of placement in or above calculus, pathways with balanced rates of placement in/below calculus, pathways with high rates of placement below calculus, and “missing” pathways: ones that produced disproportionately few engineering-intending students. From the pathways analysis we identified target locations for focus groups to identify factors that do not readily appear in institutional data, such as the impact of guidance counselor recommendations in a student’s selection of their last high school math course taken. Broad themes emerging from the focus groups provided additional insight into potential interventions at multiple points along educational pathways. These themes also contributed to both the development of a survey for statewide administration and a follow-up study to develop profiles of school district decision-making with direct and indirect effects on mathematics preparation and major selection of students from that district. As we conclude Year Two of our launch pilot, in this paper we integrate a subset of results from different aspects of the project to address both quantitative impact and qualitative context of the roles that poverty and guidance play in gaining access to engineering in South Carolina. 
    more » « less
  6. Virtual reality offers vast possibilities to enhance the conventional approach for delivering engineering education. The introduction of virtual reality technology into teaching can improve the undergraduate mechanical engineering curriculum by supplementing the traditional learning experience with outside-the-classroom materials. The Center for Aviation and Automotive Technological Education using Virtual E-Schools (CA2VES), in collaboration with the Clemson University Center for Workforce Development (CUCWD), has developed a comprehensive virtual reality-based learning system. The available e-learning materials include eBooks, mini-video lectures, three-dimensional virtual reality technologies, and online assessments. Select VR-based materials were introduced to students in a sophomore level mechanical engineering laboratory course via fourteen online course modules during a four-semester period. To evaluate the material, a comparison of student performance with and without the material, along with instructor feedback, was completed. Feedback from the instructor and the teaching assistant revealed that the material was effective in improving the laboratory safety and boosted student’s confidence in handling engineering tools. 
    more » « less
  7. Previous research has shown that initial mathematics course placement in college is a strong predictor of persistence to an engineering degree. This study examines whether greater access to devices used in high school STEM courses is positively related to a student’s college math course placement. Both qualitative and quantitative data were collected and analyzed. In the quantitative analysis, data on freshmen in Engineering and Engineering-related programs from across 20 public institutions within the same state revealed that classrooms with wireless access and the number of devices dedicated for student use in their high schools were not useful predictors of their math course placement in college. This runs counter to intuition and may provide new insight into the effectiveness of technology implementation within high school classrooms. In a qualitative analysis, the type of devices, frequency, and manner in which the devices were implemented in high school math courses were examined. 
    more » « less
  8. Previous research has shown that initial mathematics course placement in college is a strong predictor of persistence to an engineering degree. This study examines whether greater access to devices used in high school STEM courses is positively related to a student’s college math course placement. Both qualitative and quantitative data were collected and analyzed. In the quantitative analysis, data on freshmen in Engineering and Engineering-related programs from across 20 public institutions within the same state revealed that classrooms with wireless access and the number of devices dedicated for student use in their high schools were not useful predictors of their math course placement in college. This runs counter to intuition and may provide new insight into the effectiveness of technology implementation within high school classrooms. In a qualitative analysis, the type of devices, frequency, and manner in which the devices were implemented in high school math courses were examined. 
    more » « less