Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract RNA-driven phase separation is emerging as a promising approach for engineering biomolecular condensates with diverse functionalities. Condensates form thanks to weak yet specific RNA–RNA interactions established by design via complementary sequence domains. Here, we demonstrate how RNA condensates formed by star-shaped RNA motifs, or nanostars, can be dynamically controlled when the motifs include additional linear or branch-loop domains that facilitate access of regulatory RNA molecules to the nanostar interaction domains. We show that condensates dissolve in the presence of RNA “invaders” that occlude selected nanostar bonds and reduce the valency of the nanostars, preventing phase separation. We further demonstrate that the introduction of “anti-invader” strands, complementary to the invaders, makes it possible to restore condensate formation. An important aspect of our experiments is that we demonstrate these behaviors in one-pot reactions, where RNA nanostars, invaders, and anti-invaders are simultaneously transcribed in vitro using short DNA templates. Our results lay the groundwork for engineering RNA-based assemblies with tunable, reversible condensation, providing a promising toolkit for synthetic biology applications requiring responsive, self-organizing biomolecular materials.more » « less
-
Living cells regulate the dynamics of developmental events through interconnected signaling systems that activate and deactivate inert precursors. This suggests that similarly, synthetic biomaterials could be designed to develop over time by using chemical reaction networks to regulate the availability of assembling components. Here we demonstrate how the sequential activation or deactivation of distinct DNA building blocks can be modularly coordinated to form distinct populations of self-assembling polymers using a transcriptional signaling cascade of synthetic genes. Our building blocks are DNA tiles that polymerize into nanotubes, and whose assembly can be controlled by RNA molecules produced by synthetic genes that target the tile interaction domains. To achieve different RNA production rates, we use a strategy based on promoter “nicking” and strand displacement. By changing the way the genes are cascaded and the RNA levels, we demonstrate that we can obtain spatially and temporally different outcomes in nanotube assembly, including random DNA polymers, block polymers, and as well as distinct autonomous formation and dissolution of distinct polymer populations. Our work demonstrates a way to construct autonomous supramolecular materials whose properties depend on the timing of molecular instructions for self-assembly, and can be immediately extended to a variety of other nucleic acid circuits and assemblies.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Incoherent feedforward networks exhibit the ability to generate temporal pulse behavior. However, exerting control over specific dynamic properties, such as amplitude and rise time, poses a challenge and is intricately tied to the network’s implementation. In this study, we focus on analyzing sequestration-based networks capable of exhibiting pulse behavior. By employing time-scale separation in the fast sequestration regime, we approximate the temporal dynamics of these networks. This approach allows us to establish a mapping that elucidates the impact of varying the kinetic rates and pulse specifications, including amplitude and rise time. Furthermore, we introduce a positive feedback mechanism to regulate the amplitude of the pulsing response.more » « lessFree, publicly-accessible full text available December 16, 2025
-
Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract We present a strategy to control dynamically the loading and release of molecular ligands from synthetic nucleic acid receptors using in vitro transcription. We demonstrate this by engineering three model synthetic DNA‐based receptors: a triplex‐forming DNA complex, an ATP‐binding aptamer, and a hairpin strand, whose ability to bind their specific ligands can be cotranscriptionally regulated (activated or inhibited) through specific RNA molecules produced by rationally designed synthetic genes. The kinetics of our DNA sensors and their genetically generated inputs can be captured using differential equation models, corroborating the predictability of the approach used. This approach shows that highly programmable nucleic acid receptors can be controlled with molecular instructions provided by dynamic transcriptional systems, illustrating their promise in the context of coupling DNA nanotechnology with biological signaling.more » « less
-
Chemical reactions that couple to systems that phase separate have been implicated in diverse contexts from biology to materials science. However, how a particular set of chemical reactions (chemical reaction network, CRN) would affect the behaviours of a phase separating system is difficult to fully predict theoretically. In this paper, we analyse a mean field theory coupling CRNs to a combined system of phase separating and non-phase separating materials and analyse how the properties of the CRNs affect different classes of non-equilibrium behaviour: microphase separation or temporally oscillating patterns. We examine the problem of achieving microphase separated condensates by statistical analysis of the Jacobians, of which the most important motifs are negative feedback of the phase separating component and combined inhibition/activation by the non-phase separating components. We then identify CRN motifs that are likely to yield microphase by examining randomly generated networks and parameters. Molecular sequestration of the phase separating motif is shown to be the most robust towards yielding microphase separation. Subsequently, we find that dynamics of the phase separating species is promoted most easily by inducing oscillations in the diffusive components coupled to the phase separating species. Our results provide guidance towards the design of CRNs that manage the formation, dissolution and organization of compartments.more » « less
-
NA (Ed.)The development of fluorescent light-up RNA aptamers (FLAPs) has paved the way for the creation of sensors to track RNA in live cells. A major challenge with FLAP sensors is their brightness and limited signal-to-background ratio both in vivo and in vitro. To address this, we develop sensors using the Pepper aptamer, which exhibits superior brightness and photostability when compared to other FLAPs. The sensors are designed to fold into a low fluorescence conformation and to switch to a high fluorescence conformation through toehold or loop-mediated interactions with their RNA target. Our sensors detect RNA targets as short as 20 nucleotides in length with a wide dynamic range over 300-fold in vitro, and we describe strategies for optimizing the sensor’s performance for any given RNA target. To demonstrate the versatility of our design approach, we generated Pepper sensors for a range of specific, biologically relevant RNA sequences. Our design and optimization strategies are portable to other FLAPs and offer a promising foundation for future development of RNA sensors with high specificity and sensitivity for detecting RNA biomarkers with multiple applications.more » « less
An official website of the United States government
