Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 12, 2025
-
Our understanding of the fundamental role that soil bacteria play in the structure and functioning of Earth's ecosystems is ever expanding, but insight into the nature of interactions within these bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire soil community and thereby modulating multiple ecosystem functions. Global climate change often alters soil bacterial community composition, which, in turn, impacts other dependent biota. However, the impact of climate change on facilitation within bacterial communities remains poorly understood even though it may have important cascading consequences for entire ecosystems. The wealth of metagenomic data currently being generated gives community ecologists the ability to investigate bacterial facilitation in the natural world and how it affects ecological systems responses to climate change. Here, we review current evidence demonstrating the importance of facilitation in promoting emergent properties such as community diversity, ecosystem functioning, and resilience to climate change in soil bacterial communities. We show that a synthesis is currently missing between the abundant data, newly developed models and a coherent ecological framework that addresses these emergent properties. We highlight that including phylogenetic information, the physicochemical environment, and species‐specific ecologies can improve our ability to infer interactions in natural soil communities. Following these recommendations, studies on bacterial facilitation will be an important piece of the puzzle to understand the consequences of global change on ecological communities and a model to advance our understanding of facilitation in complex communities more generally.
Free, publicly-accessible full text available August 1, 2025 -
Abstract Using recently published chromosome‐length genome assemblies of two damselfly species,
Ischnura elegans andPlatycnemis pennipes , and two dragonfly species,Pantala flavescens andTanypteryx hageni , we demonstrate that the autosomes of Odonata have undergone few fission, fusion, or inversion events, despite 250 million years of separation. In the four genomes discussed here, our results show that all autosomes have a clear ortholog in the ancestral karyotype. Despite this clear chromosomal orthology, we demonstrate that different factors, including concentration of repeat dynamics, GC content, relative position on the chromosome, and the relative proportion of coding sequence all influence the density of syntenic blocks across chromosomes. However, these factors do not interact to influence synteny the same way in any two pairs of species, nor is any one factor retained in all four species. Furthermore, it was previously unknown whether the micro‐chromosomes in Odonata are descended from one ancestral chromosome. Despite structural rearrangements, our evidence suggests that the micro‐chromosomes in the sampled Odonata do indeed descend from an ancestral chromosome, and that the micro‐chromosome inP. flavescens was lost through fusion with autosomes. -
Repetitive elements (REs) are integral to the composition, structure, and function of eukaryotic genomes, yet remain understudied in most taxonomic groups. We investigated REs across 601 insect species and report wide variation in RE dynamics across groups. Analysis of associations between REs and protein-coding genes revealed dynamic evolution at the interface between REs and coding regions across insects, including notably elevated RE–gene associations in lineages with abundant long interspersed nuclear elements (LINEs). We leveraged this large, empirical data set to quantify impacts of long-read technology on RE detection and investigate fundamental challenges to RE annotation in diverse groups. In long-read assemblies, we detected ∼36% more REs than short-read assemblies, with long terminal repeats (LTRs) showing 162% increased detection, whereas DNA transposons and LINEs showed less respective technology-related bias. In most insect lineages, 25%–85% of repetitive sequences were “unclassified” following automated annotation, compared with only ∼13% in
Drosophila species. Although the diversity of available insect genomes has rapidly expanded, we show the rate of community contributions to RE databases has not kept pace, preventing efficient annotation and high-resolution study of REs in most groups. We highlight the tremendous opportunity and need for the biodiversity genomics field to embrace REs and suggest collective steps for making progress toward this goal. -
Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation—both in terms of length and repeat motif order—between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.more » « less
-
Sparrow, David (Ed.)Odonata comprise approximately 6400 species with extensive morphological and ecological diversity, specifically their colour variation, flight behaviour patterns, and breadth of ecological niches. Additionally, their phylogenetic placement within Insecta as descendants of the first winged insects make them ideal candidates for exploring evolutionary forces that have shaped diversity patterns (e.g., diversification rate shifts) as well as character evolution (e.g., flight behaviour, colour). Even though morphological and ecological traits are relatively well known for most of odonate taxa, the lack of well-supported phylogenetic hypothesis across Odonata have limited the capability of evaluating evolutionary phenomena in a comparative context. Previous studies using various taxon sampling schemes and data types (i.e. morphology, targeted locus approaches) to reconstruct odonate relationships failed to resolve several interfamilial relationships, specifically in groups with likely incomplete lineage sorting and/or introgression. Even though a recent study by Bybee et al. (2021) incorporated genomic-scale anchored hybrid enrichment (AHE) data for phylogenetic reconstruction, the relatively limited taxon sampling likely precluded resolution within the problematic groups. Our study, also targeting AHE loci, greatly expand taxon odonate genera, which resulted in 729 newly generated samples in a addition to 142 samples from Bybee et al. (2021) for a total of 831. With around 500 AHE loci, we aim to resolve historically difficult relationships and construct a robust ordinal phylogeny of Odonata, which will be used as the evolutionary framework to clarify taxonomic classifications and test evolutionary hypotheses regarding shifts in flight behaviours, colours, and diversification rates.more » « less
-
Wheat, Christopher (Ed.)Abstract We present a chromosome-length genome assembly and annotation of the Black Petaltail dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70 million years ago, and separated from the most closely related Odonata with a reference genome 150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of the most high-quality Odonata genomes to date. A scaffold N50 of 206.6 Mb and a single copy BUSCO score of 96.2% indicate high contiguity and completeness.more » « less
-
In less than 25 y, the field of animal genome science has transformed from a discipline seeking its first glimpses into genome sequences across the Tree of Life to a global enterprise with ambitions to sequence genomes for all of Earth’s eukaryotic diversity [H. A. Lewin et al. , Proc. Natl. Acad. Sci. U.S.A. 115, 4325–4333 (2018)]. As the field rapidly moves forward, it is important to take stock of the progress that has been made to best inform the discipline’s future. In this Perspective, we provide a contemporary, quantitative overview of animal genome sequencing. We identified the best available genome assemblies in GenBank, the world’s most extensive genetic database, for 3,278 unique animal species across 24 phyla. We assessed taxonomic representation, assembly quality, and annotation status for major clades. We show that while tremendous taxonomic progress has occurred, stark disparities in genomic representation exist, highlighted by a systemic overrepresentation of vertebrates and underrepresentation of arthropods. In terms of assembly quality, long-read sequencing has dramatically improved contiguity, whereas gene annotations are available for just 34.3% of taxa. Furthermore, we show that animal genome science has diversified in recent years with an ever-expanding pool of researchers participating. However, the field still appears to be dominated by institutions in the Global North, which have been listed as the submitting institution for 77% of all assemblies. We conclude by offering recommendations for improving genomic resource availability and research value while also broadening global representation.more » « less
-
Abstract The field of plant genome sequencing has grown rapidly in the past 20 years, leading to increases in the quantity and quality of publicly available genomic resources. The growing wealth of genomic data from an increasingly diverse set of taxa provides unprecedented potential to better understand the genome biology and evolution of land plants. Here we provide a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation. We show that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species. We identify numerous disconnects between the native range of focal species and the national affiliation of the researchers studying them, which we argue are rooted in colonialism—both past and present. Luckily, falling sequencing costs, widening availability of analytical tools and an increasingly connected scientific community provide key opportunities to improve existing assemblies, fill sampling gaps and empower a more global plant genomics community.