Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neuromorphic systems built from memristors that emulate bioelectrical information processing in a brain may overcome limits in traditional computing architectures. However, functional emulation alone may still not attain all the merits of bio-computation, which uses action potentials of 50-120 mV at least 10-time lower than signal amplitude in conventional electronics to achieve extraordinary power efficiency and effective functional integration. Reducing the functional voltage in memristors to this biological amplitude thus can advance neuromorphic engineering and bio-emulated integration. This review aims to provide a timely update on the effort and progress in this burgeoning direction, covering aspects in device material composition, performance, working mechanism, and potential application.more » « less
-
Memristors are promising candidates for constructing neural networks. However, their dissimilar working mechanism to that of the addressing transistors can result in a scaling mismatch, which may hinder efficient integration. Here, we demonstrate two-terminal MoS2 memristors that work with a charge-based mechanism similar to that in transistors, which enables the homogeneous integration with MoS2 transistors to realize one-transistor-one-memristor addressable cells for assembling programmable network. The homogenously integrated cells are implemented in a 2×2 network array to demonstrate the enabled addressability and programmability. The potential for assembling scalable network is evaluated in a simulated neural network using obtained realistic device parameters, which achieves over 91% pattern recognition accuracy. This study also reveals a generic mechanism and strategy that can be applied to other semiconducting devices for the engineering and homogeneous integration of memristive systems.more » « less
-
Abstract Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.more » « less
-
null (Ed.)Abstract Incorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration.more » « less
-
Abstract An efficient strategy for addressing individual devices is required to unveil the full potential of memristors for high‐density memory and computing applications. Existing strategies using two‐terminal selectors that are preferable for compact integration have trade‐offs in reduced generality or functional window. A strategy that applies to broad memristors and maintains their full‐range functional window is proposed. This strategy uses a type of unipolar switch featuring a transient relaxation or retention as the selector. The unidirectional current flow in the switch suppresses the sneak‐path current, whereas the transient‐relaxation window is exploited for bidirectional programming. A unipolar volatile memristor with ultralow switching voltage (e.g., <100 mV), constructed from a protein nanowire dielectric harvested fromGeobacter sulfurreducens, is specifically employed as the example switch to highlight the advantages and scalability in the strategy for array integration.more » « less