Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Layered transition metal hydroxides (LTMHs) with transition metal centers sandwiched between layers of coordinating hydroxide anions have attracted considerable interest for their potential in developing clean energy sources and storage technologies. However, two-dimensional (2D) LTMHs remain largely understudied in terms of physical properties and applications in electronic devices. Here, for the first time we report > 20 μm α-Ni(OH)22D crystals, synthesized from hydrothermal reaction. And an edge-on condensation mechanism assisted with the crystal field geometry is proposed to understand the 2D intra-planar growth of the crystals, which is also testified through series of systematic comparative studies. We also report the successful synthesis of 2D Co(OH)2crystals (> 40 μm) with more irregular shape due to the slightly distorted octahedral geometry of the crystal field. Moreover, the detailed structural characterization of synthesized α-Ni(OH)2are performed. The optical band gap energy is extrapolated as 2.54 eV from optical absorption measurements and the electronic bandgap is measured as 2.52 eV from reflected electrons energy loss spectroscopy (REELS). We further demonstrate its potential as a wide bandgap (WBG) semiconductor for high voltage operation in 2D electronics with a high breakdown strength, 4.77 MV/cm with 4.9 nm thickness. The successful realization of the 2D LTMHs opens the door for future exploration of more fundamental physical properties and device applications.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available November 26, 2025
-
Free, publicly-accessible full text available January 28, 2026
An official website of the United States government
