Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Performing object retrieval in real-world workspaces must tackle challenges including uncertainty and clutter. One option is to apply prehensile operations, which can be time consuming in highly-cluttered scenarios. On the other hand, non-prehensile actions, such as pushing simultaneously multiple objects, can help to quickly clear a cluttered workspace and retrieve a target object. Such actions, however, can also lead to increased uncertainty as it is difficult to estimate the outcome of pushing operations. The proposed framework in this work integrates topological tools and Monte-Carlo Tree Search (MCTS) to achieve effective and robust pushing for object retrieval. It employs persistent homology to automatically identify manageable clusters of blocking objects without the need for manually adjusting hyper-parameters. Then, MCTS uses this information to explore feasible actions to push groups of objects, aiming to minimize the number of operations needed to clear the path to the target. Real-world experiments using a Baxter robot, which involves some noise in actuation, show that the proposed framework achieves a higher success rate in solving retrieval tasks in dense clutter than alternatives. Moreover, it produces solutions with few pushing actions improving the overall execution time. More critically, it is robust enough that it allows one to plan the sequence of actions offline and then execute them reliably on a Baxter robot.more » « less
-
For rearranging objects on tabletops with overhand grasps, temporarily relocating objects to some buffer space may be necessary. This raises the natural question of how many simultaneous storage spaces, or “running buffers,” are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both labeled and unlabeled settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance and show that computing MRB is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases. We further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop effective exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimic real-world setups generally have fairly small MRBs. Using real robot experiments, we demonstrate that the running buffer abstraction leads to state-of-the-art solutions for the in-place rearrangement of many objects in a tight, bounded workspace.