skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Gettelman, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The sensitivity of cloud feedbacks to atmospheric model parameters is evaluated using a CAM6 perturbed parameter ensemble (PPE). The CAM6 PPE perturbs 45 parameters across 262 simulations, 206 of which are used here. The spread in the total cloud feedback and its six components across the CAM6 PPE are comparable to the spread across the CMIP6 and AMIP ensembles, indicating that parametric uncertainty mirrors structural uncertainty. However, the high-cloud altitude feedback is generally larger in the CAM6 PPE than WCRP assessment, CMIP6, and AMIP values. We evaluate the influence of each of the 45 parameters on the total cloud feedback and each of the six cloud feedback components. We also explore whether the CAM6 PPE can be used to constrain the total cloud feedback, with inconclusive results. Further, we find that despite the large parametric sensitivity of cloud feedbacks in CAM6, a substantial increase in cloud feedbacks from CAM5 to CAM6 is not a result of changes in parameter values. Notably, the CAM6 PPE is run with a more recent version of CAM6 (CAM6.3) than was used for AMIP (CAM6.0) and has a smaller total cloud feedback (0.56 W m−2K−1) as compared to CAM6.0 (0.81 W m−2K−1) owing primarily to reductions in low clouds over the tropics and midlatitudes. The work highlights the large sensitivity of cloud feedbacks to both parameter values and structural details in CAM6.

    more » « less
  2. Abstract For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m −2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation. Significance Statement This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles. 
    more » « less
  3. Abstract

    Cloud microphysics is one of the most time‐consuming components in a climate model. In this study, we port the cloud microphysics parameterization in the Community Atmosphere Model (CAM), known as Parameterization of Unified Microphysics Across Scales (PUMAS), from CPU to GPU to seek a computational speedup. The directive‐based methods (OpenACC and OpenMP target offload) are determined as the best fit specifically for our development practices, which enable a single version of source code to run either on the CPU or GPU, and yield a better portability and maintainability. Their performance is first examined in a PUMAS stand‐alone kernel and the directive‐based methods can outperform a CPU node as long as there is enough computational burden on the GPU. A consistent behavior is observed when we run PUMAS on the GPU in a practical CAM simulation. A 3.6× speedup of the PUMAS execution time, including data movement between CPU and GPU, is achieved at a coarse horizontal resolution (8 NVIDIA V100 GPUs against 36 Intel Skylake CPU cores). This speedup further increases up to 5.4× at a high resolution (24 NVIDIA V100 GPUs against 108 Intel Skylake CPU cores), which highlights the fact that GPU favors larger problem size. This study demonstrates that using GPU in a CAM simulation can save noticeable computational costs even with a small portion of code being GPU‐enabled. Therefore, we are encouraged to port more parameterizations to GPU to take advantage of its computational benefit.

    more » « less
  4. Abstract. Global climate models (GCMs) have advanced in many ways ascomputing power has allowed more complexity and finer resolutions. As GCMsreach storm-resolving scales, they need to be able to produce realisticprecipitation intensity, duration, and frequency at fine scales withconsideration of scale-aware parameterization. This study uses astate-of-the-art storm-resolving GCM with a nonhydrostatic dynamical core – theModel for Prediction Across Scales (MPAS), incorporated in the atmosphericcomponent (Community Atmosphere Model, CAM) of the open-source CommunityEarth System Model (CESM), within the System for Integrated Modeling of theAtmosphere (SIMA) framework (referred to as SIMA-MPAS). At uniform coarse (here, at 120 km) gridresolution, the SIMA-MPAS configuration is comparable to the standardhydrostatic CESM (with a finite-volume (FV) dynamical core) with reasonableenergy and mass conservation on climatological timescales. With thecomparable energy and mass balance performance between CAM-FV (workhorse dynamical core) and SIMA-MPAS (newly developed dynamical core), it gives confidence inSIMA-MPAS's applications at a finer resolution. To evaluate this, we focuson how the SIMA-MPAS model performs when reaching a storm-resolving scale at3 km. To do this efficiently, we compose a case study using a SIMA-MPASvariable-resolution configuration with a refined mesh of 3 km covering thewestern USA and 60 km over the rest of the globe. We evaluated the modelperformance using satellite and station-based gridded observations withcomparison to a traditional regional climate model (WRF, the WeatherResearch and Forecasting model). Our results show realistic representationsof precipitation over the refined complex terrains temporally and spatially.Along with much improved near-surface temperature, realistic topography, andland–air interactions, we also demonstrate significantly enhanced snowpackdistributions. This work illustrates that the global SIMA-MPAS atstorm-resolving resolution can produce much more realistic regional climatevariability, fine-scale features, and extremes to advance both climate andweather studies. This next-generation storm-resolving model could ultimatelybridge large-scale forcing constraints and better inform climate impactsand weather predictions across scales. 
    more » « less
  5. Abstract

    Ice nucleation in mixed‐phase clouds has been identified as a critical factor in projections of future climate. Here we explore how this process influences climate sensitivity using the Community Earth System Model 2 (CESM2). We find that ice nucleation affects simulated cloud feedbacks over most regions and levels of the troposphere, not just extratropical low clouds. However, with present‐day global mean cloud phase adjusted to replicate satellite retrievals, similar total cloud feedback is attained whether ice nucleation is simulated as aerosol‐sensitive, insensitive, or absent. These model experiments all result in a strongly positive total cloud feedback, as in the default CESM2. A microphysics update from CESM1 to CESM2 had substantially weakened ice nucleation, due partly to a model issue. Our findings indicate that this update reduced global cloud phase bias, with CESM2's high climate sensitivity reflecting improved mixed‐phase cloud representation.

    more » « less
  6. Abstract

    A comparative analysis between observational data from McMurdo Station, Antarctica and the Community Atmosphere Model version 6 (CAM6) simulation is performed focusing on cloud characteristics and their thermodynamic conditions. Ka‐band Zenith Radar (KAZR) and High Spectral Resolution Lidar (HSRL) retrievals are used as the basis of cloud fraction and cloud phase identifications. Radiosondes released at 12‐h increments provide atmospheric profiles for evaluating the simulated thermodynamic conditions. Our findings show that the CAM6 simulation consistently overestimates (underestimates) cloud fraction above (below) 3 km in four seasons of a year. Normalized by total in‐cloud samples, ice and mixed phase occurrence frequencies are underestimated and liquid phase frequency is overestimated by the model at cloud fractions above 0.6, while at cloud fractions below 0.6 ice phase frequency is overestimated and liquid‐containing phase frequency is underestimated by the model. The cloud fraction biases are closely associated with concurrent biases in relative humidity (RH), that is, high (low) RH biases above (below) 2 km. Frequencies of correctly simulating ice and liquid‐containing phase increase when the absolute biases of RH decrease. Cloud fraction biases also show a positive correlation with RH biases. Water vapor mixing ratio biases are the primary contributor to RH biases, and hence, likely a key factor controlling the cloud biases. This diagnosis of the evident shortfalls of representations of cloud characteristics in CAM6 simulation at McMurdo Station brings new insight in improving the governing model physics therein.

    more » « less
  7. Abstract

    Southern Ocean (SO) low‐level mixed phase clouds have been a long‐standing challenge for Earth system models to accurately represent. While improvements to the Community Earth System Model version 2 (CESM2) resulted in increased supercooled liquid in SO clouds and improved model radiative biases, simulated SO clouds in CESM2 now contain too little ice. Previous observational studies have indicated that marine particles are major contributor to SO low‐level cloud heterogeneous ice nucleation, a process that initiates a number of cloud processes that govern cloud radiative properties. In this study, we utilize detailed aerosol and ice nucleating particle (INP) measurements from two recent measurement campaigns to assess simulated aerosol abundance, number size distributions, and composition and INP parameterizations for use in CESM2. Our results indicate that CESM2 has a positive bias in simulated surface‐level total aerosol surface area at latitudes north of 58°S. Measured INP populations were dominated by marine INPs and we present evidence of refractory INPs present over the SO assumed here to be mineral dust INPs. Results highlight a critical need to assess simulated mineral dust number and size distributions in CESM2 in order to adequately represent SO INP populations and their response to long‐term changes in atmospheric transport patterns and land use change. We also discuss important cautions and limitations in applying a commonly used mineral dust INP parameterization to remote regions like the pristine SO.

    more » « less
  8. To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature. 
    more » « less