skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giordano, Silvio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The variability of helium abundance in the solar corona and the solar wind is an important signature of solar activity, solar cycle, and solar wind sources, as well as coronal heating processes. Motivated by recently reported remote-sensing UV imaging observations by Helium Resonance Scattering in the Corona and Heliosphere payload sounding rocket of helium abundance in the inner corona on 2009 September 14 near solar minimum, we present the results of the first three-dimensional three-fluid (electrons, protons, and alpha particles) model of tilted coronal streamer belt and slow solar wind that illustrates the various processes leading to helium abundance differentiation and variability. We find good qualitative agreement between the three-fluid model and the coronal helium abundance variability deduced from UV observations of streamers, providing insight on the effects of the physical processes, such as heating, gravitational settling, and interspecies Coulomb friction in the outflowing solar wind that produce the observed features. The study impacts our understanding of the origins of the slow solar wind. 
    more » « less
  2. Abstract This paper reports the first possible evidence for the development of the Kelvin–Helmholtz (KH) instability at the border of coronal holes separating the associated fast wind from the slower wind originating from adjacent streamer regions. Based on a statistical data set of spectroscopic measurements of the UV corona acquired with the UltraViolet Coronagraph Spectrometer on board the SOlar and Heliospheric Observatory during the minimum activity of solar cycle 22, high temperature–velocity correlations are found along the fast/slow solar wind interface region and interpreted as manifestations of KH vortices formed by the roll-up of the shear flow, whose dissipation could lead to higher heating and, because of that, higher velocities. These observational results are supported by solving coupled solar wind and turbulence transport equations including a KH-driven source of turbulence along the tangential velocity discontinuity between faster and slower coronal flows: numerical analysis indicates that the correlation between the solar wind speed and temperature is large in the presence of the shear source of turbulence. These findings suggest that the KH instability may play an important role both in the plasma dynamics and in the energy deposition at the boundaries of coronal holes and equatorial streamers. 
    more » « less
  3. Abstract This Letter reports the first observation of the onset of fully developed turbulence in the solar corona. Long time series of white-light coronal images, acquired by Metis aboard Solar Orbiter at 2 minutes cadence and spanning about 10 hr, were studied to gain insight into the statistical properties of fluctuations in the density of the coronal plasma in the time domain. From pixel-by-pixel spectral frequency analysis in the whole Metis field of view, the scaling exponents of plasma fluctuations were derived. The results show that, over timescales ranging from 1 to 10 hr and corresponding to the photospheric mesogranulation-driven dynamics, the density spectra become shallower moving away from the Sun, resembling a Kolmogorov-like spectrum at 3R. According to the latest observation and interpretive work, the observed 5/3 scaling law for density fluctuations is indicative of the onset of fully developed turbulence in the corona. Metis observation-based evidence for a Kolmogorov turbulent form of the fluctuating density spectrum casts light on the evolution of 2D turbulence in the early stages of its upward transport from the low corona. 
    more » « less
  4. Abstract Evidence for the presence of ion cyclotron waves (ICWs), driven by turbulence, at the boundaries of the current sheet is reported in this paper. By exploiting the full potential of the joint observations performed by Parker Solar Probe and the Metis coronagraph on board Solar Orbiter, local measurements of the solar wind can be linked with the large-scale structures of the solar corona. The results suggest that the dynamics of the current sheet layers generates turbulence, which in turn creates a sufficiently strong temperature anisotropy to make the solar-wind plasma unstable to anisotropy-driven instabilities such as the Alfvén ion cyclotron, mirror-mode, and firehose instabilities. The study of the polarization state of high-frequency magnetic fluctuations reveals that ICWs are indeed present along the current sheet, thus linking the magnetic topology of the remotely imaged coronal source regions with the wave bursts observed in situ. The present results may allow improvement of state-of-the-art models based on the ion cyclotron mechanism, providing new insights into the processes involved in coronal heating. 
    more » « less
  5. The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory/(SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there. 
    more » « less
  6. Abstract This Letter reports the first observational estimate of the heating rate in the slowly expanding solar corona. The analysis exploits the simultaneous remote and local observations of the same coronal plasma volume, with the Solar Orbiter/Metis and the Parker Solar Probe instruments, respectively, and relies on the basic solar wind magnetohydrodynamic equations. As expected, energy losses are a minor fraction of the solar wind energy flux, since most of the energy dissipation that feeds the heating and acceleration of the coronal flow occurs much closer to the Sun than the heights probed in the present study, which range from 6.3 to 13.3 R ⊙ . The energy deposited to the supersonic wind is then used to explain the observed slight residual wind acceleration and to maintain the plasma in a nonadiabatic state. As derived in the Wentzel–Kramers–Brillouin limit, the present energy transfer rate estimates provide a lower limit, which can be very useful in refining the turbulence-based modeling of coronal heating and subsequent solar wind acceleration. 
    more » « less
  7. null (Ed.)