Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traditionally, an item-level differential privacy framework has been studied for applications in distributed learning. However, when a client has multiple data samples, and might want to also hide its potential participation, a more appropriate notion is that of user-level privacy [1]. In this paper, we develop a distributed private optimization framework that studies the trade-off between user-level local differential privacy guarantees and performance. This is enabled by a novel distributed user- level private mean estimation algorithm using distributed private heavy-hitter estimation. We use this result to develop the privacy- performance trade-off for distributed optimization.more » « less
-
The central question studied in this paper is Rényi Differential Privacy (RDP) guarantees for general discrete local randomizers in the shuffle privacy model. In the shuffle model, each of the 𝑛 clients randomizes its response using a local differentially private (LDP) mechanism and the untrusted server only receives a random permutation (shuffle) of the client responses without association to each client. The principal result in this paper is the first direct RDP bounds for general discrete local randomization in the shuffle pri- vacy model, and we develop new analysis techniques for deriving our results which could be of independent interest. In applications, such an RDP guarantee is most useful when we use it for composing several private interactions. We numerically demonstrate that, for important regimes, with composition our bound yields an improve- ment in privacy guarantee by a factor of 8× over the state-of-the-art approximate Differential Privacy (DP) guarantee (with standard composition) for shuffle models. Moreover, combining with Pois- son subsampling, our result leads to at least 10× improvement over subsampled approximate DP with standard composition.more » « less
-
This paper studies a distributed optimization problem in the federated learning (FL) framework under differential privacy constraints, whereby a set of clients having local samples are connected to an untrusted server, who wants to learn a global model while preserving the privacy of clients’ local datasets. We propose a new client sampling called self-sampling that reflects the random availability of clients in the learning process in FL. We analyze the differential privacy of the SGD with client self-sampling by composing amplification by sub-sampling along with amplification by shuffling. Furthermore, we analyze the convergence of the proposed SGD algorithm showing that we can get a reasonable learning performance while preserving the privacy of clients’ data even with client self-sampling.more » « less
-
We consider a distributed empirical risk minimization (ERM) optimization problem with communication efficiency and privacy requirements, motivated by the federated learn- ing (FL) framework. We propose a distributed communication-efficient and local differentially private stochastic gradient descent (CLDP-SGD) algorithm and analyze its communication, privacy, and convergence trade-offs. Since each iteration of the CLDP- SGD aggregates the client-side local gradients, we develop (optimal) communication-efficient schemes for mean estimation for several lp spaces under local differential privacy (LDP). To overcome performance limitation of LDP, CLDP-SGD takes advantage of the inherent privacy amplification provided by client sub- sampling and data subsampling at each se- lected client (through SGD) as well as the recently developed shuffled model of privacy. For convex loss functions, we prove that the proposed CLDP-SGD algorithm matches the known lower bounds on the centralized private ERM while using a finite number of bits per iteration for each client, i.e., effectively get- ting communication efficiency for “free”. We also provide preliminary experimental results supporting the theory.more » « less
-
In this paper, we study an estimation problem under the local differential privacy (LDP) framework: There is an ordered list of d values (e.g., real numbers); a set of n users, where each user observes an element from this list and each value in the list is observed by at least one user; and an untrusted server, who wants to estimate the values that the users possess, without learning (in the sense of LDP) the actual value that each user has and its corresponding index in the list. Towards this, we propose two LDP estimation schemes: The first one is under the assumption that the server knows the number of users that observe each value; and the second one is for the general scenario, in which the server does not have this prior information. We show that the minimax risk decreases with the total number of users under a very mild condition on the number of users observing each value.more » « less