Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study investigates the ionospheric total electron content (TEC) responses in the 2‐D spatial domain and electron density variations in the 3‐D spatial domain during the annular solar eclipse on 14 October 2023, using ground‐based Global Navigation Satellite System (GNSS) observations, a novel TEC‐based ionospheric data assimilation system (TIDAS), ionosonde measurements, and satellite in situ data. The main results are summarized as follows: (a) The 2‐D TEC responses exhibited distinct latitudinal differences. The mid‐latitude ionosphere exhibited a more substantial TEC decrease of 25%–40% along with an extended recovery time of 3–4 hr. In contrast, the equatorial and low‐latitude ionosphere experienced a smaller TEC reduction of 10%–25% and a faster recovery time of 20–50 min. The minimal eclipse effect was observed near the northern equatorial ionization anomaly crest region. (b) The ionospheric electron density variations during the eclipse were effectively reconstructed by TIDAS data assimilation in the 3‐D domain, providing important altitude information with validity. (c) The ionospheric electron density variations showed a notable altitude‐dependent feature. The eclipse led to a substantial electron density reduction of 30%–50%, with the maximum depletion occurring around the ionospheric F2‐layer peak height (hmF2) of 250–350 km. The post‐eclipse recovery of electron density exhibited a relatively slower pace near the F2‐layer peak height than that at lower and higher altitudes.more » « less
-
Given the existential threat of climate change, we urge the heliophysics scientific community to consider ways in which we might further contribute to global efforts to address climate change. Whole atmosphere studies reveal that climate change processes impact even the uppermost regions of the atmosphere. The heliophysics research community now has models spanning the surface through the upper thermosphere and a diversity of observational datasets of the middle and upper atmosphere that span multiple decades. These studies indicate that the middle and upper atmosphere provide multiple vertical footprints for climate change and thus can contribute to an understanding of whole atmosphere climate change processes in the complex atmosphereland- ocean system. This white paper outlines recommendations for expansion of long-term data sets; simulations of climate with whole atmosphere models; engagement in collaborations with the tropospheric research community; and exploration of the possibility of heliophysics contributions to climate assessment efforts. Additionally, we recommend education and outreach efforts to help members of the wider community become more knowledgeable about climate change; support for efforts to increase the diversity of the heliophysics science community; support for international collaborations, and climate mitigation measures that our science community can implement to reduce greenhouse gas emissions from our research, education, and outreach activities.more » « less
-
Climate change is characterized by global surface warming associated with the increase of greenhouse gas population since the start of the industrial era. Growing evidence shows that the upper atmosphere is experiencing appreciable cooling over the last several decades. The seminal modeling study by Roble and Dickinson (1989) suggested potential effects of increased greenhouse gases on the ionosphere and thermosphere cooling which appear consistent with some observations. However, several outstanding issues remain regarding the role of CO 2 , other important contributors, and impacts of the cooling trend in the ionosphere and thermosphere: for example, (1) what is the regional variability of the trends? (2) the very strong ionospheric cooling observed by multiple incoherent scatter radars that does not fit with the prevailing theory based on the argument of anthropogenic greenhouse gas increases, why? (3) what is the effect of secular changes in Earth’s main magnetic field? Is it visible now in the ionospheric data and can it explain some of the regional variability in the observed ionospheric trends? (4) what is the impact of long-term cooling in the thermosphere on operational systems? (5) what are the appropriate strategic plans to ensure the long-term monitoring of the critical space climate?more » « less
-
The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least 4 days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ∼300–350 m/s (depending on the propagation direction) and 500–1,000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 h since the eruption. TIDs following the shock fronts developed for ∼8 h with 10–30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels such as atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances.more » « less
-
The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved.more » « less
-
Abstract In Vadas et al. (2024,https://doi.org/10.1029/2024ja032521), we modeled the atmospheric gravity waves (GWs) during 11–14 January 2016 using the HIAMCM, and found that the polar vortex jet generates medium to large‐scale, higher‐order GWs in the thermosphere. In this paper, we model the traveling ionospheric disturbances (TIDs) generated by these GWs using the HIAMCM‐SAMI3 and compare with ionospheric observations from ground‐based Global Navigation Satellite System (GNSS) receivers, Incoherent Scatter Radars (ISR) and the Super Dual Auroral Radar Network (SuperDARN). We find that medium to large‐scale TIDs are generated worldwide by the higher‐order GWs from this event. Many of the TIDs over Europe and Asia have concentric ring/arc‐like structure, and most of those over North/South America have planar wave structure and occur during the daytime. Those over North/South America propagate southward and are generated by higher‐order GWs from Europe/Asia which propagate over the Arctic. These latter TIDs can be misidentified as arising from geomagnetic forcing. We find that the higher‐order GWs that propagate to Africa and Brazil from Europe may aid in the formation of equatorial plasma bubbles (EPBs) there. We find that the simulated GWs, TIDs and EPBs agree with EISCAT, PFISR, GNSS, and SuperDARN measurements. We find that the higher‐order GWs are concentrated at N at 200 km, in agreement with GOCE and CHAMP data. Thus the polar vortex jet is important for generating TIDs in the northern winter ionosphere via multi‐step vertical coupling through GWs.more » « less
-
Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.more » « less
-
Abstract This study presents multi‐instrument observations of persistent large‐scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady‐state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry–Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 19 UT and 5 UT on 18–19 January 2013 over the Alaska region down to lower midlatitudes. This study showcases the first use of GUVI for the study of LSTADs. These novel GUVI observations demonstrate the potential for the GUVI far ultraviolet emissions to be used for global‐scale studies of waves and atmospheric disturbances in the thermosphere, a region lacking in long‐term global measurements. These observations typify changes in the radiance from around 140 to 180 km, opening a new window into the behavior of the thermosphere.more » « less
An official website of the United States government
