skip to main content

Title: 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves
The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least 4 days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ∼300–350 m/s (depending on the propagation direction) and 500–1,000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 h since the eruption. TIDs following the shock fronts developed for ∼8 h with 10–30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels such as atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances.  more » « less
Award ID(s):
2033787 2149698 1952737
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere.

    more » « less
  2. Dynasonde approach to ionospheric radio sounding capitalizes on high precision of physical parameters and rich statistics of recognized echoes phase-based methods can provide. As has been recently demonstrated, the Dynasonde profiles of the electron density and of the horizontal gradients, complemented with profiles of the Doppler speed, carry comprehensive quantitative information about Atmospheric Gravity Waves, a ubiquitous feature of the space weather that has become an important objective of atmospheric modeling. Being combined into a time series, and without additional processing, the profiles allow visualization of the time fronts of the Traveling Ionospheric Disturbances (TIDs). They also provide high-resolution input data for calculating the complete set of parameters (both vertical and horizontal) of TID activity in the upper atmosphere between the base of the E layer and the maximum of the F layer. Application of the Lomb-Scargle periodogram technique to the tilt data provides unique insight into the dynamics of spectral composition of the TIDs. A similar technique applied to longer time series allows determining characteristics of thermospheric tides. Single sounding sessions allow observations of ionospheric manifestations of acoustic waves produced by ground-based sources. All the mentioned products of the Dynasonde data analysis require a common, standard ionogram mode of radar operation. Therefore, information about standard parameters of the ionospheric E, F regions, possibility to obtain vector velocities characterizing movement of plasma contours, and quantitative parameters of the km-scale irregularity spectrum are not lost and contribute into comprehensive description of wave activity in the thermosphere-ionosphere system. 
    more » « less
  3. Abstract

    The Hunga‐Tonga Hunga‐Ha'apai volcano underwent a series of large‐magnitude eruptions that generated broad spectra of mechanical waves in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic‐gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano‐induced AGWs in mesopause and ionosphere‐thermosphere airglow imagery and Fabry‐Perot interferometry. We also report unique AGW signatures in the ionospheric D‐region, measured using Long‐Range Navigation pulsed low‐frequency transmitter signals. Although we observed fluctuations over a wide range of periods and speeds, we identify Lamb wave modes exhibiting 295–345 m s−1phase front velocities with correlated spatial variability of their amplitudes from the Earth's surface to the ionosphere. Results suggest that the Lamb wave modes, tracked by our ray‐tracing modeling results, were accompanied by deep fluctuation fields coupled throughout the atmosphere, and were all largely consistent in arrival times with the sequence of eruptions over 8 hr. The ray results also highlight the importance of winds in reducing wave amplitudes at CONUS midlatitudes. The ability to identify and interpret Lamb wave modes and accompanying fluctuations on the basis of arrival times and speeds, despite complexity in their spectra and modulations by the inhomogeneous atmosphere, suggests opportunities for analysis and modeling to understand their signals to constrain features of hazardous events.

    more » « less
  4. Abstract

    A statistical picture of the occurrence and characteristics of Traveling Ionospheric Disturbances (TIDs) over the Antarctic Peninsula is established using Global Navigation Satellite System Total Electron Content and High Frequency sounding observations. The measured parameters of the majority of the disturbances allow classifying them as medium scale TIDs (MSTIDs). Overall, the observed climatology of ionospheric disturbances in the Antarctic Peninsula region varies significantly with the season and makes it possible to differentiate two major types of the disturbances: winter daytime and summer nighttime, based on their occurrence periods and characteristics. During the Antarctic summer period, the disturbances are present mainly during the nighttime and morning hours, when the background plasma density is at maximum (due to Weddell Sea Anomaly). These disturbances predominantly propagate northwestward and their occurrence probability is well correlated with the sporadic E layer observations, suggesting that these are electrified MSTIDs. During the winter, the TID events are almost exclusively observed during the daytime. The propagation direction of the disturbances during the daytime shows a strong correlation with the background neutral wind direction in the thermosphere. A possible mechanism for this effect is wind filtering of the Atmospheric Gravity Waves originating in the troposphere, which indicates that their source is in the lower atmosphere. The periods of the TIDs also significantly differ between the seasons. Wintertime TIDs have noticeably shorter periods (10–50 min) than those observed during other parts of the year (30–140 min), which also likely reflects the fact that the two types of TIDs are generated by different physical mechanisms.

    more » « less
  5. Abstract

    Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere‐thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global‐scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption‐induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14–17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X‐pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long‐lasting quasi‐periodic fluctuations between ±200 m/s for 7–8 hr after the passage of volcano‐induced Lamb waves. The EIA suppression and X‐pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.

    more » « less