Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we describe the development and preliminary assessment of ACORN Physics Tutorials, which are designed to elicit and build on common conceptual resources for understanding physics. We articulate our design principles and instructional commitments and how these bear out in the specifics of one ACORN Physics Tutorial about electric circuits. We describe preliminary results from research on the implementation of the circuits ACORN Physics Tutorials. Namely, we observe students’ sensemaking in real time as they complete worksheets; we document shifts in students’ performance and use of specific conceptual resources from pre- to postinstruction using ACORN Physics Tutorials; and we show that students generally perceive their ideas to have mattered as they work with their peers on these worksheets. We hope these results can inform instructor decision making about the appropriateness of ACORN Physics Tutorials for their local contexts.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Physics Education Research has a rich history of identifying common student ideas about specific physics topics. In the context of electric circuits, existing research on students’ ideas has primarily focused on misconceptions, misunderstandings, and difficulties. In this paper, we take a resource-oriented approach to identifying common student ideas about circuits by characterizing ideas we see as generative “seeds of science” that could form the basis of more sophisticated understandings. Based on our analysis of 1557 university physics student responses to five conceptual questions, we identify four common resources for understanding circuits. Published by the American Physical Society2024more » « less
-
Resources-oriented instruction in physics treats student thinking as sensible and then seeks to connect what students are saying and doing to physics content and practices. This paper uses an illustrative case to make progress toward answering the instructional questions: “What does resources-oriented instruction in physics look like?” and “How can I do it?”. We analyze an interaction between a university TA and a group of four introductory physics students completing a worksheet about mechanical wave propagation. We show some of the ways in which the TA's instructional moves supported students in making conceptual progress, even though several of the students' ideas would not be accepted as correct by many physicists.more » « less
-
Perhaps the most commonly cited student idea about forces in the literature is the notion of an impetus force, defined as the “belief that there is a force inside a moving object that keeps it going and causes it to have some speed,” that can then “fade away as the object moves along.” According to the literature, even after physics instruction students use impetus force reasoning to argue that forces are necessary to sustain motion or that motion implies force. For example, many students drew an upward arrow to indicate a force on a coin that was moving upward after being tossed. The coin was halfway between the point of its release and its turnaround point. Interviews with students in the course indicate that the arrow was meant to indicate “the ‘force of the throw,’ the ‘upward original force,’” and so on. Clement interprets these results to mean that students “believe that continuing motion implies the presence of a continuing force in the same direction, as a necessary cause of the motion.”more » « less
An official website of the United States government
