Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract According to the concept of physical integration as understood in axiomatic design, design parameters of a product should be integrated into a single physical part or a few parts with the aim of reducing the information content, while still satisfying the independence of functional requirement. However, no specific method is suggested in the literature for determining the optimal degree of physical integration in a given design. This is particularly important with the current advancement in technologies such as additive manufacturing. As new manufacturing technologies allow physical elements to be integrated in new ways, new methods are needed to help designers optimize physical integration given the specific constraints and conflicts of each design. This study proposes an algorithm that uses graph partitioning to allow a designer to optimize the integration of functional requirements into a target number of parts, with the goal of minimizing the co-allocation of incompatible functional requirements in the same part. The operation and viability of the algorithm are demonstrated via two numerical examples and a practical example of designing a pencil.more » « less
-
Waste tracking is becoming an important concern for developed countries as well as developing regions, where municipalities aim to assure proper waste management considering environmental and economic objectives. Waste tracking is important not only for a transparent reporting system compatible with environmental regulations but also for economically viable waste collection and recovery solutions. In this paper, a waste tracking system based on the blockchain technology is introduced where different entities involved in the system will be able to retrieve required data from the platform and decide on their level of contributions. The conventional technologies do not provide a sufficient level of transparency and coordination among different entities. With the introduction of blockchain as a tamper-proof technology, municipalities can enhance the efficiency of their waste management efforts. The proposed blockchain technology can connect proper stakeholders towards collaboration and sharing information. The concept of a smart contract for waste management is discussed and further, a decision-making framework is developed to guide users of the system select proper services available to them, depending on the level of data sharing, cost, reliability, and the security level that they expect from the system.more » « less
-
With the modern age of using genetically engineered products and growing concerns about food recalls and outbreaks, businesses are looking for ways to secure their brand names and assuring consumers about food safety and quality. Recently, Blockchain has been introduced as a promising approach for increasing the visibility of the supply chain and reducing the sale of contaminated and counterfeit products. Along this line, this study discusses the capabilities of Blockchain for the collection and monitoring of product lifecycle information ranging from production, wholesale, and logistics to standards, business reputation, and certification. The particular focus of the study is to discuss the use of videogrammetry as a data collection mechanism for bringing the product lifecycle data on digital Blockchain platforms and solving the “last mile” problem and data verification issue on Blockchain platforms. A conceptual example of organic meat processing is discussed to describe the proposed procedure and show how videogrammetry in combination with RFID and fingerprints can be used to solve the data verification issue on Blockchain platforms.more » « less
-
This study proposes a graph partitioning method to facilitate the idea of physical integration proposed in Axiomatic Design. According to the physical integration concept, the design features should be integrated into a single physical part or a few parts with the aim of reducing the information content, given that the independence of functional requirements is still satisfied. However, no specific method is suggested in the literature for determining the optimal degree of physical integration of a design artifact. This is particularly important with the current advancement in Additive Manufacturing technologies. Since additive manufacturing allows physical elements to be integrated, new methods are needed to help designers evaluate the impact of the physical integration on the design success. The objective of this paper is to develop a framework for determining the best way that functional requirements can be assigned to different parts of a product.
-
This study proposes a graph partitioning method to facilitate the idea of physical integration proposed in Axiomatic Design. According to the physical integration concept, the design features should be integrated into a single physical part or a few parts with the aim of reducing the information content, given that the independence of functional requirements is still satisfied. However, no specific method is suggested in the literature for determining the optimal degree of physical integration of a design artifact. This is particularly important with the current advancement in Additive Manufacturing technologies. Since additive manufacturing allows physical elements to be integrated, new methods are needed to help designers evaluate the impact of the physical integration on the design success. The objective of this paper is to develop a framework for determining the best way that functional requirements can be assigned to different parts of a product.more » « less
-
This study used the unrealized potential of citizen science as an innovative educational tool with the aim of enhancing research and learning experience of students in several engineering design and manufacturing courses with a particular focus on sustainability-related topics. Citizen science has been employed as a data collection and educational tool in two engineering courses at the University at Buffalo in which students were tasked with reporting examples of good and bad designs they observe in their everyday life. The results revealed the significant potential of citizen scientists to report innovative and informative design and manufacturing ideas.more » « less