skip to main content


Search for: All records

Creators/Authors contains: "Gransbury, Isabella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Within K-12 computing education, the building blocks that contribute to student success and equitable outcomes are broadly captured in the CAPE framework (i.e., capacity, access, participation, experience). However, these broad com- ponents provide limited detail on the important factors that can support academic achievement, particularly within each component. Our research question for this study was: What are factors comprising each component of CAPE that support academic achievement among K-12 CS students?To answer this question, we first created an a priori set of factors based on previous research findings that have been found to contribute to academic achievement. After organizing these factors within each CAPE component, we conducted a systematic mapping review of K-12 CS education research (2019-2021) (n = 196) from publicly available peer-reviewed articles from the K-12 CS Education Research Resource Center. Through this mapping, we identified an additional set of factors that have been studied by CS education researchers and added these to our set of factors. More importantly, we found that capacity was the component investigated the most frequently and access was the least. There are many areas (or categories) within each component that remain unstudied (i.e., dual credit offerings, career guidance), even though they play a role in computing education. The expanded CAPE framework is now publicly available and can be used to inform researchers and practitioners about what each CAPE component comprises. These factors are accompanied by descriptions of each factor. Not only does it highlight the many factors to be considered when designing and delivering computing education to K-12 students, it also provides a solid framework for future research that synthesizes or analyzes homogeneous factors or explores how various factors may be correlated. 
    more » « less
  2. Background. Software Engineering (SE) is a new and emerging topic in secondary computer science classrooms. However, a review of the recent literature has identified an overall lack of reporting on the development of SE secondary curriculum. Previous studies also report low student engagement when teaching these concepts. Objectives. In this experience report, we discuss the development of a 9-week, project-based learning (PBL) SE curriculum for secondary students. During this curriculum, students create a socially relevant project in groups of two to three. We discuss displays of participant engagement with CS concepts through the PBL pedagogy and the SE curriculum. Method. We examine participant engagement through group artifact interviews about student experiences during a week-long, virtual summer camp that piloted activities from our curriculum. During this camp, students followed a modified SE life cycle created by the authors of the paper. Findings. Participants showed engagement with the curriculum through various aspects of PBL, such as autonomy, creativity, and personal interest in their project topic. Implications. The lessons learned from this experience report suggest that PBL pedagogy can increase student engagement when teaching CS concepts, and this pedagogy provides detail and structure for future secondary SE curriculum implementations to support educators in the classroom 
    more » « less
  3. Students can have widely varying experiences while working on CS2 coding projects. Challenging experiences can lead to lower motivation and less success in completing these assignments. In this paper, we identify the common struggles CS2 students face while working on course projects and examine whether or not there is evidence of improvement in these areas of struggle between projects. While previous work has been conducted on understanding the importance of self-regulated learning to student success, it has not been fully investigated in the scope of CS2 coursework. We share our observations on investigating student struggles while working on coding projects through their self-reported response to a project reflection form. We apply emergent coding to identify student struggles at three points during the course and compare them against student actions in the course, such as project start times and office hours participation, to identify if students were overcoming these struggles. Through our coding and analysis we have found that while a majority of students encounter struggles with time management and debugging of failing tests, students tend to emphasize wanting to improve their time management skills in future coding assignments. 
    more » « less
  4. Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career. 
    more » « less
  5. Historically, female students have shown low interest in the field of computer science. Previous computer science curricula have failed to address the lack of female-centered computer science activities, such as socially relevant and real-life applications. Our new summer camp curriculum introduces the topics of artificial intelligence (AI), machine learning (ML) and other real-world subjects to engage high school girls in computing by connecting lessons to relevant and cutting edge technologies. Topics range from social media bots, sentiment of natural language in different media, and the role of AI in criminal justice, and focus on programming activities in the NetsBlox and Python programming languages. Summer camp teachers were prepared in a week-long pedagogy and peer-teaching centered professional development program where they concurrently learned and practiced teaching the curriculum to one another. Then, pairs of teachers led students in learning through hands-on AI and ML activities in a half-day, two-week summer camp. In this paper, we discuss the curriculum development and implementation, as well as survey feedback from both teachers and students. 
    more » « less
  6. Our researchers seek to support students in building block-based programming projects that are motivating and engaging as well as valuable practice in learning to code. A difficult part of the programming process is planning. In this research, we explore how novice programmers used a custom-built planning tool, PlanIT, contrasted against how they used storyboarding when planning games. In a three-part study, we engaged novices in planning and programming three games: a maze game, a break-out game, and a mashup of the two. In a set of five case studies, we show how five pairs of students approached the planning and programming of these three games, illustrating that students felt more creative when storyboarding rather than using PlanIT. We end with a discussion on the implications of this work for designing supports for novices to plan open-ended projects. 
    more » « less
  7. The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session. 
    more » « less