skip to main content

Search for: All records

Creators/Authors contains: "Gu, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Free, publicly-accessible full text available June 11, 2024
  3. Free, publicly-accessible full text available January 1, 2024
  4. Abstract The bandwidth-tuned Wigner-Mott transition is an interaction-driven phase transition from a generalized Wigner crystal to a Fermi liquid. Because the transition is generally accompanied by both magnetic and charge-order instabilities, it remains unclear if a continuous Wigner-Mott transition exists. Here, we demonstrate bandwidth-tuned metal-insulator transitions at fixed fractional fillings of a MoSe 2 /WS 2 moiré superlattice. The bandwidth is controlled by an out-of-plane electric field. The dielectric response is probed optically with the 2s exciton in a remote WSe 2 sensor layer. The exciton spectral weight is negligible for the metallic state with a large negative dielectric constant. It continuously vanishes when the transition is approached from the insulating side, corresponding to a diverging dielectric constant or a ‘dielectric catastrophe’ driven by the critical charge dynamics near the transition. Our results support the scenario of continuous Wigner-Mott transitions in two-dimensional triangular lattices and stimulate future explorations of exotic quantum phases in their vicinities. 
    more » « less