Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the discovery of (Al,Cu)‐bearing metallic alloys in two micrometeorites found in the Project Stardust collection gathered from urban rooftop environments in Norway. Most of the alloys are the same as those found in the Khatyrka meteorite and other micrometeorites, though one has a composition that has not been reported previously. Oxygen isotope ratio measurements using secondary ion mass spectrometry show that the Project Stardust samples reported here, like all earlier examples of natural (Al,Cu)‐bearing alloys, contain material of chondritic affinity.more » « lessFree, publicly-accessible full text available July 1, 2026
-
The sulfur chemistry of (162173) Ryugu particles can be a powerful tracer of molecular cloud chemistry and small body processes, but it has not been well explored. We report identification of organosulfurs and a sulfate grain in two Ryugu particles, A0070 and A0093. The sulfate grain shows oxygen isotope ratios (δ17O = −11.0 ± 4.3 per mil, δ18O = −7.8 ± 2.3 per mil) that are akin to silicates in Ryugu but exhibit mass-independent sulfur isotopic fractionation (Δ33S = +5 ± 2 per mil). A methionine-like coating on the sulfate grain is isotopically anomalous (δ15N = +62 ± 2 per mil). Both the sulfate and organosulfurs can simultaneously form and survive during aqueous alteration within Ryugu’s parent body, under reduced conditions, low temperature, and a pH >7 in the presence of N-rich organic molecules. This work extends the heliocentric zone where anomalous sulfur, formed by selective photodissociation of H2S gas in the molecular cloud, is found.more » « less
-
We present a new set of reference materials, the ND70‐series, forin situmeasurement of volatile elements (H2O, CO2, S, Cl, F) in silicate glass of basaltic composition. The materials were synthesised in piston cylinders at pressures of 1 to 1.5 GPa under volatile‐undersaturated conditions. They span mass fractions from 0 to 6%m/mH2O, from 0 to 1.6%m/mCO2and from 0 to 1%m/mS, Cl and F. The materials were characterised by elastic recoil detection analysis for H2O, by nuclear reaction analysis for CO2, by elemental analyser for CO2, by Fourier transform infrared spectroscopy for H2O and CO2, by secondary ion mass spectrometry for H2O, CO2, S, Cl and F, and by electron probe microanalysis for CO2, S, Cl and major elements. Comparison between expected and measured volatile amounts across techniques and institutions is excellent. It was found however that SIMS measurements of CO2mass fractions using either Cs+or O−primary beams are strongly affected by the glass H2O content. Reference materials have been made available to users at ion probe facilities in the US, Europe and Japan. Remaining reference materials are preserved at the Smithsonian National Museum of Natural History where they are freely available on loan to any researcher.more » « less
-
null (Ed.)Minor and trace elements in diamond-like carbon (DLC) are difficult to quantify using SIMS analysis because minor elemental and structural variations can result in major matrix effects even across individual, cm-sized samples. While this material is most commonly used for tribological coatings where minor element composition is not of critical importance, it is being increasingly used in electronic devices. However, it is a unique application that spurred this work: anhydrous, tetrahedrally-coordinated DLC (ta-C) was used as a solar wind (SW) collector material in the Genesis solar-wind sample return mission (NASA Discovery 5). So, for ∼15 years, we have been working on attaining accurate and precise measurement of minor and trace elements in the Genesis DLC using SIMS to achieve our mission goals. Specifically, we have learned to deal with relevant matrix effects in our samples, ion implants into ta-C. Our unknown element for quantification is SW Mg, a low-dose (1.67 × 10 12 at cm −2 ; ∼6 μg g −1 24 Mg), low-energy (∼24 keV average energy) implant; our standard is a high-dose (∼1 × 10 14 at cm −2 of both 25 Mg, 26 Mg) 75 keV laboratory implant for which the absolute 26 Mg/ 25 Mg ratio had been measured to account for variable instrumental mass fractionation. Analyses were performed using O 2 + primary ions having both a low impact energy and a current density of ∼2 × 10 14 ions per cm 2 . Although our unknown was solar wind, the method is applicable to many situations where minor elements in DLC need to be quantified. Recommendations are presented for modifying this data-reduction technique for other SIMS conditions.more » « less
An official website of the United States government
