Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum entanglement is a fundamental property of quantum mechanics. Recently, studies have explored entanglement in the$$ t\overline{t} $$ system at the Large Hadron Collider (LHC) when both the top quark and anti-top quark decay leptonically. Entanglement is detected via correlations between the polarizations of the top and anti-top and these polarizations are measured through the angles of the decay products of the top and anti-top. In this work, we propose searching for evidence of quantum entanglement in the semi-leptonic decay channel where the final state includes one lepton, one neutrino, twob-flavor tagged jets, and two light jets from theWdecay. We find that this channel is both easier to reconstruct and has a larger effective quantity of data than the fully leptonic channel. As a result, the semi-leptonic channel is 60% more sensitive to quantum entanglement and a factor of 3 more sensitive to Bell inequality violation, compared to the leptonic channel. In 139 fb−1(3 ab−1) of data at the LHC (HL-LHC), it should be feasible to measure entanglement at a precision of ≲ 3% (0.7%). Detecting Bell inequality violation, on the other hand, is more challenging. With 300 fb−1(3 ab−1) of integrated luminosity at the LHC Run-3 (HL-LHC), we expect a sensitivity of 1.3σ(4.1σ). In our study, we utilize a realistic parametric fitting procedure to optimally recover the true angular distributions from detector effects. Compared to unfolding this procedure yields more stable results.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Users on edge generate deep inference requests continuously over time. Mobile/edge devices located near users can undertake the computation of inference locally for users, e.g., the embedded edge device on an autonomous vehicle. Due to limited computing resources on one mobile/edge device, it may be challenging to process the inference requests from users with high throughput. An attractive solution is to (partially) offload the computation to a remote device in the network. In this paper, we examine the existing inference execution solutions across local and remote devices and propose an adaptive scheduler, a BPS scheduler, for continuous deep inference on collaborative edge intelligence. By leveraging data parallel, neurosurgeon, reinforcement learning techniques, BPS can boost the overall inference performance by up to 8.2× over the baseline schedulers. A lightweight compressor, FF, specialized in compressing intermediate output data for neurosurgeon, is proposed and integrated into the BPS scheduler. FF exploits the operating character of convolutional layers and utilizes efficient approximation algorithms. Compared to existing compression methods, FF achieves up to 86.9% lower accuracy loss and up to 83.6% lower latency overhead.more » « lessFree, publicly-accessible full text available July 1, 2025
-
There is a significant interest in testing quantum entanglement and Bell inequality violation in high-energy experiments. Since the analyses in high-energy experiments are performed with events statistically averaged over phase space, the states used to determine observables depend on the choice of coordinates through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the threshold production for measuring Bell inequality violation, while at high transverse momentum the basis that aligns along the momentum direction of the top is optimal. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available June 1, 2025
-
Deep neural network (DNN) inference poses unique challenges in serving computational requests due to high request intensity, concurrent multi-user scenarios, and diverse heterogeneous service types. Simultaneously, mobile and edge devices provide users with enhanced computational capabilities, enabling them to utilize local resources for deep inference processing. Moreover, dynamic inference techniques allow content-based computational cost selection per request. This paper presents Dystri, an innovative framework devised to facilitate dynamic inference on distributed edge infrastructure, thereby accommodating multiple heterogeneous users. Dystri offers a broad applicability in practical environments, encompassing heterogeneous device types, DNN-based applications, and dynamic inference techniques, surpassing the state-of-the-art (SOTA) approaches. With distributed controllers and a global coordinator, Dystri allows per-request, per-user adjustments of quality-of-service, ensuring instantaneous, flexible, and discrete control. The decoupled workflows in Dystri naturally support user heterogeneity and scalability, addressing crucial aspects overlooked by existing SOTA works. Our evaluation involves three multi-user, heterogeneous DNN inference service platforms deployed on distributed edge infrastructure, encompassing seven DNN applications. Results show Dystri achieves near-zero deadline misses and excels in adapting to varying user numbers and request intensities. Dystri outperforms baselines with accuracy improvement up to 95 ×.more » « less
-
While recent work explored streaming volumetric content on-demand, there is little effort on live volumetric video streaming that bears the potential of bringing more exciting applications than its on-demand counterpart. To fill this critical gap, in this paper, we propose MetaStream, which is, to the best of our knowledge, the first practical live volumetric content capture, creation, delivery, and rendering system for immersive applications such as virtual, augmented, and mixed reality. To address the key challenge of the stringent latency requirement for processing and streaming a huge amount of 3D data, MetaStream integrates several innovations into a holistic system, including dynamic camera calibration, edge-assisted object segmentation, cross-camera redundant point removal, and foveated volumetric content rendering. We implement a prototype of MetaStream using commodity devices and extensively evaluate its performance. Our results demonstrate that MetaStream achieves low-latency live volumetric video streaming at close to 30 frames per second on WiFi networks. Compared to state-of-the-art systems, MetaStream reduces end-to-end latency by up to 31.7% while improving visual quality by up to 12.5%.more » « less
-
A<sc>bstract</sc> We present a comprehensive study on how to distinguish the properties of heavy dijet resonances at hadron colliders. A variety of spins, chiral couplings, charges, and QCD color representations are considered. Distinguishing the different color representations is particularly difficult at hadron colliders. To determine the QCD color structure, we consider a third jet radiated in a resonant dijet event. We show that the relative rates of three-jet versus two-jet processes are sensitive to the color representation of the resonance. We also show analytically that the antennae radiation pattern of soft radiation depends on the color structure of dijet events and develops an observable that is sensitive to the antennae patterns. Finally, we exploit a Convolutional Neural Network with Machine Learning techniques to differentiate the radiation patterns from different colored resonances and find encouraging results to discriminate them. We demonstrate our results numerically at a 14 TeV LHC, and the methodology presented here should be applicable to other future hadron colliders.more » « less
-
This paper presents the Pinch Sensor, an elastic input device to sense the fine motion and pinch force of the index finger and thumb - the two most used digits of human hands for in-hand object manipulation skills. In addition to open and close, the device would allow a user to control a robotic or simulated two-finger hand to reorient an object in three different ways and their combinations. A unique design of elastic sensing provides the users a high degree of perception resolution, as well as the sensation of holding an object with a certain level of stiffness between the index finger and thumb. These characteristics help the users to fine control the pinch force while carrying out manipulation skills. The design features a small size that allows it to be integrated to a handheld controller. Commonly available off-the-shelf components for consumer electronics are used to achieve affordability and reliability.more » « less
-
A bstract The future Electron-Ion Collider (EIC) at Brookhaven National Laboratory, along with its primary capacity to elucidate the nuclear structure, will offer new opportunities to probe physics beyond the Standard Model coupled to the electroweak sector. Among the best motivated examples of such new physics are new heavy neutral leptons (HNLs), which are likely to play a key role in neutrino mass generation and lepton number violation. We study the capability of the EIC to search for HNLs, which can be produced in electron- proton collisions through charged current interactions as a consequence of their mixing with light neutrinos. We find that, with the EIC design energy and integrated luminosity, one is able to probe HNLs in the mass range of 1 – 100 GeV with mixing angles down to the order of 10 − 4 − 10 − 3 through the prompt decay signatures, and in the mass range of 1 10 GeV with | U e | 2 ~ 10 − 6 – 10 − 4 via the displaced decay signatures. We also consider the invisible mode where an HNL is undetected or decaying to dark sector particles. One could potentially probe heavy HNLs for mixing angles in the window 10 − 3 – 10 − 2 , provided SM background systematics can be brought under control. These searches are complementary to other probes of HNLs, such as neutrino-less double- β decay, meson decay, fixed-target, and high-energy collider experiments.more » « less