skip to main content

Search for: All records

Creators/Authors contains: "Harigaya, Keisuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract Rotations of an axion field in field space provide a natural origin for an era of kination domination, where the energy density is dominated by the kinetic term of the axion field, preceded by an early era of matter domination. Remarkably, no entropy is produced at the end of matter domination and hence these eras of matter and kination domination may occur even after Big Bang Nucleosynthesis. We derive constraints on these eras from both the cosmic microwave background and Big Bang Nucleosynthesis. We investigate how this cosmological scenario affects the spectrum of possible primordial gravitational waves and find that the spectrum features a triangular peak. We discuss how future observations of gravitational waves can probe the viable parameter space, including regions that produce axion dark matter by the kinetic misalignment mechanism or the baryon asymmetry by axiogenesis. For QCD axion dark matter produced by the kinetic misalignment mechanism, a modification to the inflationary gravitational wave spectrum occurs above 0.01 Hz and, for high values of the energy scale of inflation, the prospects for discovery are good. We briefly comment on implications for structure formation of the universe. 
    more » « less
  2. A bstract The vanishing of the Higgs quartic coupling at a high energy scale may be explained by Intermediate Scale Supersymmetry, where supersymmetry breaks at (10 9 -10 12 ) GeV. The possible range of supersymmetry breaking scales can be narrowed down by precise measurements of the top quark mass and the strong coupling constant. On the other hand, nuclear recoil experiments can probe Higgsino or sneutrino dark matter up to a mass of 10 12 GeV. We derive the correlation between the dark matter mass and precision measurements of standard model parameters, including supersymmetric threshold corrections. The dark matter mass is bounded from above as a function of the top quark mass and the strong coupling constant. The top quark mass and the strong coupling constant are bounded from above and below respectively for a given dark matter mass. We also discuss how the observed dark matter abundance can be explained by freeze-out or freeze-in during a matter-dominated era after inflation, with the inflaton condensate being dissipated by thermal effects. 
    more » « less
  3. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less
  4. null (Ed.)
    A bstract Adding an axion-like particle (ALP) to the Standard Model, with a field velocity in the early universe, simultaneously explains the observed baryon and dark matter densities. This requires one or more couplings between the ALP and photons, nucleons, and/or electrons that are predicted as functions of the ALP mass. These predictions arise because the ratio of dark matter to baryon densities is independent of the ALP field velocity, allowing a correlation between the ALP mass, m a , and decay constant, f a . The predicted couplings are orders of magnitude larger than those for the QCD axion and for dark matter from the conventional ALP misalignment mechanism. As a result, this scheme, ALP cogenesis, is within reach of future experimental ALP searches from the lab and stellar objects, and for dark matter. 
    more » « less
  5. A bstract We propose a baryogenenesis mechanism that uses a rotating condensate of a Peccei-Quinn (PQ) symmetry breaking field and the dimension-five operator that gives Majorana neutrino masses. The rotation induces charge asymmetries for the Higgs boson and for lepton chirality through sphaleron processes and Yukawa interactions. The dimension-five interaction transfers these asymmetries to the lepton asymmetry, which in turn is transferred into the baryon asymmetry through the electroweak sphaleron process. QCD axion dark matter can be simultaneously produced by dynamics of the same PQ field via kinetic misalignment or parametric resonance, favoring an axion decay constant f a ≲ 10 10 GeV, or by conventional misalignment and contributions from strings and domain walls with f a ∼ 10 11 GeV. The size of the baryon asymmetry is tied to the mass of the PQ field. In simple supersymmetric theories, it is independent of UV parameters and predicts the supersymmtry breaking mass scale to be $$ \mathcal{O} $$ O (10 − 10 4 ) TeV, depending on the masses of the neutrinos and whether the condensate is thermalized during a radiation or matter dominated era. The high supersymmetry breaking mass scale may be free from cosmological and flavor/CP problems. We also construct a theory where TeV scale supersymmetry is possible. Parametric resonance may give warm axions, and the radial component of the PQ field may give signals in rare kaon decays from mixing with the Higgs and in dark radiation. 
    more » « less
  6. null (Ed.)