Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper concerns the inverse shape problem of recovering an unknown clamped cavity embedded in a thin infinite plate. The model problem is assumed to be governed by the two-dimensional biharmonic wave equation in the frequency domain. Based on the far-field data, a resolution analysis is conducted for cavity recovery via the direct sampling method. The Funk–Hecke integral identity is employed to analyze the performance of two imaging functions. Our analysis demonstrates that the same imaging functions commonly used for acoustic inverse shape problems are applicable to the biharmonic wave context. This work presents the first extension of direct sampling methods to biharmonic waves using far-field data. Numerical examples are provided to illustrate the effectiveness of these imaging functions in recovering a clamped cavity.more » « less
-
Abstract This paper presents a fast and robust numerical method for reconstructing point-like sources in the time-harmonic Maxwell’s equations given Cauchy data at a fixed frequency. This is an electromagnetic inverse source problem with broad applications, such as antenna synthesis and design, medical imaging, and pollution source tracing. We introduce new imaging functions and a computational algorithm to determine the number of point sources, their locations, and associated moment vectors, even when these vectors have notably different magnitudes. The number of sources and locations are estimated using significant peaks of the imaging functions, and the moment vectors are computed via explicitly simple formulas. The theoretical analysis and stability of the imaging functions are investigated, where the main challenge lies in analyzing the behavior of the dot products between the columns of the imaginary part of the Green’s tensor and the unknown moment vectors. Additionally, we extend our method to reconstruct small-volume sources using an asymptotic expansion of their radiated electric field. We provide numerical examples in three dimensions to demonstrate the performance of our method.more » « lessFree, publicly-accessible full text available December 20, 2025
-
Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball.more » « less
-
Abstract In this paper, we consider a regularization strategy for the factorization method when there is noise added to the data operator. The factorization method is aqualitativemethod used in shape reconstruction problems. These methods are advantageous to use due to the fact that they are computationally simple and require littlea prioriknowledge of the object one wishes to reconstruct. The main focus of this paper is to prove that the regularization strategy presented here produces stable reconstructions. We will show this is the case analytically and numerically for the inverse shape problem of recovering an isotropic scatterer with a conductive boundary condition. We also provide a strategy for picking the regularization parameter with respect to the noise level. Numerical examples are given for a scatterer in two dimensions.more » « less
An official website of the United States government
