skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hatton, Ross"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as “serpenoid templates”). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization. 
    more » « less
    Free, publicly-accessible full text available June 11, 2025
  2. The Robotic locomotion community is interested in optimal gaits for control. Based on the optimization criterion, however, there could be a number of possible optimal gaits. For example, the optimal gait for maximizing displacement with respect to cost is quite different from the maximum displacement optimal gait. Beyond these two general optimal gaits, we believe that the optimal gait should deal with various situations for high-resolution of motion planning, e.g., steering the robot or moving in “baby steps.” As the step size or steering ratio increases or decreases, the optimal gaits will slightly vary by the geometric relationship and they will form the families of gaits. In this paper, we explored the geometrical framework across these optimal gaits having different step sizes in the family via the Lagrange multiplier method. Based on the structure, we suggest an optimal locus generator that solves all related optimal gaits in the family instead of optimizing each gait respectively. By applying the optimal locus generator to two simplified swimmers in drag-dominated environments, we verify the behavior of the optimal locus generator. 
    more » « less
  3. In this work we present the design of a swimming robot that is inspired by the body shape modulation of small microorganisms. Amoebas are small single celled organisms that locomote through deformation and shape change of their body. To achieve similar shape modulation for swimming propulsion in a robot we developed a novel flexible appendage using tape springs. A tape spring is an elongated strip of metal with a curved cross-section that can act as a stiff structure when loaded against the curvature, while it can easily buckle when loaded with the curvature. We develop a tape spring appendage that is capable of freely deforming its perimeter through two actuation inputs. In the first portion of this paper we develop the kinematics of the appendage mechanisms and compare with experiment. Next we present the design of a surface locomoting robot that uses two appendages for propulsion. From the appendage kinematics we derive the local connection vector field for locomotion kinematics and study the optimal gait for forward swimming. Lastly, we demonstrate robot swimming performance in open water conditions. The novel appendage design in this robot is advantageous because it enables omnidirectional movement, the appendages will not tangle in debris, and they are robust to collisions and contact with structures. 
    more » « less
  4. The complex dynamics of agile robotic legged locomotion requires motion planning to intelligently adjust footstep locations. Often, bipedal footstep and motion planning use mathematically simple models such as the linear inverted pendulum, instead of dynamically-rich models that do not have closed-form solutions. We propose a real-time optimization method to plan for dynamical models that do not have closed form solutions and experience irrecoverable failure. Our method uses a data-driven approximation of the step-to-step dynamics and of a failure margin function. This failure margin function is an oriented distance function in state-action space where it describes the signed distance to success or failure. The motion planning problem is formed as a nonlinear program with constraints that enforce the approximated forward dynamics and the validity of state-action pairs. For illustration, this method is applied to create a planner for an actuated spring-loaded inverted pendulum model. In an ablation study, the failure margin constraints decreased the number of invalid solutions by between 24 and 47 percentage points across different objectives and horizon lengths. While we demonstrate the method on a canonical model of locomotion, we also discuss how this can be applied to data-driven models and full-order robot models. 
    more » « less