skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Tian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate road networks play a crucial role in modern mobile applications such as navigation and last-mile delivery. Most existing studies primarily focus on generating road networks in open areas like main roads and avenues, but little attention has been given to the generation of community road networks in closed areas such as residential areas, which becomes more and more significant due to the growing demand for door-to-door services such as food delivery. This lack of research is primarily attributed to challenges related to sensing data availability and quality. In this paper, we design a novel framework called SmallMap that leverages ubiquitous multi-modal sensing data from last-mile delivery to automatically generate community road networks with low costs. Our SmallMap consists of two key modules: (1) a Trajectory of Interest Detection module enhanced by exploiting multi-modal sensing data collected from the delivery process; and (2) a Dual Spatio-temporal Generative Adversarial Network module that incorporates Trajectory of Interest by unsupervised road network adaptation to generate road networks automatically. To evaluate the effectiveness of SmallMap, we utilize a two-month dataset from one of the largest logistics companies in China. The extensive evaluation results demonstrate that our framework significantly outperforms state-of-the-art baselines, achieving a precision of 90.5%, a recall of 87.5%, and an F1-score of 88.9%, respectively. Moreover, we conduct three case studies in Beijing City for courier workload estimation, Estimated Time of Arrival (ETA) in last-mile delivery, and fine-grained order assignment. 
    more » « less
  2. null (Ed.)
    Computer-aided diagnosis (CAD) systems must constantly cope with the perpetual changes in data distribution caused by different sensing technologies, imaging protocols, and patient populations. Adapting these systems to new domains often requires significant amounts of labeled data for re-training. This process is labor-intensive and time-consuming. We propose a memory-augmented capsule network for the rapid adaptation of CAD models to new domains. It consists of a capsule network that is meant to extract feature embeddings from some high-dimensional input, and a memory-augmented task network meant to exploit its stored knowledge from the target domains. Our network is able to efficiently adapt to unseen domains using only a few annotated samples. We evaluate our method using a large-scale public lung nodule dataset (LUNA), coupled with our own collected lung nodules and incidental lung nodules datasets. When trained on the LUNA dataset, our network requires only 30 additional samples from our collected lung nodule and incidental lung nodule datasets to achieve clinically relevant performance (0.925 and 0.891 area under receiving operating characteristic curves (AUROC), respectively). This result is equivalent to using two orders of magnitude less labeled training data while achieving the same performance. We further evaluate our method by introducing heavy noise, artifacts, and adversarial attacks. Under these severe conditions, our network’s AUROC remains above 0.7 while the performance of state-of-the-art approaches reduce to chance level 
    more » « less
  3. null (Ed.)
    Large-scale battery packs are commonly used in applications such as electric vehicles (EVs) and smart grids. Traditionally, to provide stable voltage to the loads, voltage regulators are used to convert battery packs’ output voltage to those of the loads’ required levels, causing power loss especially when the difference between the supplied and required voltages is large or when the load is light. In this article, we address this issue via a reconfiguration framework for the battery system. By abstracting the battery system as a cell graph, we develop an adaptive reconfiguration algorithm to identify the desired system configurations based on real-time load requirements. Our design is evaluated via both prototype-based experiments, EV driving trace-based emulations, and large-scale simulations. The results demonstrate an extended system operation time of up to 5×, especially when facing severe cell imbalance. 
    more » « less
  4. null (Ed.)