skip to main content

Search for: All records

Creators/Authors contains: "Heffernan, Neil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solving mathematical problems is cognitively complex, involving strategy formulation, solution development, and the application of learned concepts. However, gaps in students’ knowledge or weakly grasped concepts can lead to errors. Teachers play a crucial role in predicting and addressing these difficulties, which directly influence learning outcomes. However, preemptively identifying misconcep- tions leading to errors can be challenging. This study leverages historical data to assist teachers in recognizing common errors and addressing gaps in knowledge through feedback. We present a longitudinal analysis of incorrect answers from the 2015-2020 aca- demic years on two curricula, Illustrative Math and EngageNY, for grades 6, 7, and 8. We find consistent errors across 5 years despite varying student and teacher populations. Based on these Common Wrong Answers (CWAs), we designed a crowdsourcing platform for teachers to provide Common Wrong Answer Feedback (CWAF). This paper reports on an in vivo randomized study testing the ef- fectiveness of CWAFs in two scenarios: next-problem-correctness within-skill and next-problem-correctness within-assignment, re- gardless of the skill. We find that receiving CWAF leads to a signifi- cant increase in correctness for consecutive problems within-skill. However, the effect was not significant for all consecutive problems within-assignment, irrespective of the associated skill. This papermore »investigates the potential of scalable approaches in identifying Com- mon Wrong Answers (CWAs) and how the use of crowdsourced CWAFs can enhance student learning through remediation.« less
    Free, publicly-accessible full text available July 1, 2024
  2. It is particularly important to identify and address issues of fairness and equity in educational contexts as academic performance can have large impacts on the types of opportunities that are made available to students. While it is always the hope that educators approach student assessment with these issues in mind, there are a number of factors that likely impact how a teacher approaches the scoring of student work. Particularly in cases where the assessment of student work requires subjective judgment, as in the case of open-ended answers and essays, contextual information such as how the student has performed in the past, general perceptions of the student, and even other external factors such as fatigue may all influence how a teacher approaches assessment. While such factors exist, however, it is not always clear how these may introduce bias, nor is it clear whether such bias poses measurable risks to fairness and equity. In this paper, we examine these factors in the context of the assessment of student answers to open response questions from middle school mathematics learners. We observe how several factors such as context and fatigue correlate with teacher-assigned grades and discuss how learning systems may support fair assessment. Keywords:more »halo effect, grading biases, fairness, subjective assessment« less
    Free, publicly-accessible full text available November 1, 2023
  3. Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website.
    Free, publicly-accessible full text available July 18, 2023
  4. Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website.
    Free, publicly-accessible full text available July 1, 2023
  5. To improve student learning outcomes within online learning platforms, struggling students are often provided with on-demand supplemental instructional content. Recently, services like Yup (yup.com) and UPcheive (upchieve.org) have begun to offer on-demand live tutoring sessions with qualified educators, but the availability of tutors and the cost associated with hiring them prevents many students from having access to live support. To help struggling students and offset the inequities intrinsic to high-cost services, we are attempting to develop a process that uses large language representation models to algorithmically identify relevant support messages from these chat logs, and distribute them to all students struggling with the same content. In an empirical evaluation of our methodology we were able to identify messages from tutors to students struggling with middle school mathematics problems that qualified as explanations of the content. However, when we distributed these explanations to students outside of the tutoring sessions, they had an overall negative effect on the students’ learning. Moving forward, we want to be able to identify messages that will promote equity and have a positive impact on students.
    Free, publicly-accessible full text available July 18, 2023
  6. To improve student learning outcomes within online learning platforms, struggling students are often provided with on-demand supplemental instructional content. Recently, services like Yup (yup.com) and UPcheive (upchieve.org) have begun to offer on-demand live tutoring sessions with qualified educators, but the availability of tutors and the cost associated with hiring them prevents many students from having access to live support. To help struggling students and offset the inequities intrinsic to high-cost services, we are attempting to develop a process that uses large language representation models to algorithmically identify relevant support messages from these chat logs, and distribute them to all students struggling with the same content. In an empirical evaluation of our methodology we were able to identify messages from tutors to students struggling with middle school mathematics problems that qualified as explanations of the content. However, when we distributed these explanations to students outside of the tutoring sessions, they had an overall negative effect on the students’ learning. Moving forward, we want to be able to identify messages that will promote equity and have a positive impact on students.
    Free, publicly-accessible full text available July 1, 2023
  7. Studies have proven that providing on-demand assistance, additional instruction on a problem when a student requests it, improves student learning in online learning environments. Additionally, crowdsourced, on-demand assistance generated from educators in the field is also effective. However, when provided on-demand assistance in these studies, students received assistance using problem-based randomization, where each condition represents a different assistance, for every problem encountered. As such, claims about a given educator’s effectiveness are provided on a per-assistance basis and not easily generalizable across all students and problems. This work aims to provide stronger claims on which educators are the most effective at generating on-demand assistance. Students will receive on-demand assistance using educator-based randomization, where each condition represents a different educator who has generated a piece of assistance, allowing students to be kept in the same condition over longer periods of time. Furthermore, this work also attempts to find additional benefits to providing students assistance generated by the same educator compared to a random assistance available for the given problem. All data and analysis being conducted can be found on the Open Science Foundation website
    Free, publicly-accessible full text available July 1, 2023
  8. The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks inmore »knowledge tracing. Specifically, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches. Keywords: Deep Learning · LSTM · Echo State Network · Affect · Knowledge Tracing.« less
    Free, publicly-accessible full text available July 1, 2023
  9. The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students' knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead nding that it may be the model's complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student a ect as well as expanding on exist- ing work that explored benchmarksmore »in knowledge tracing. Speci cally, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches.« less
    Free, publicly-accessible full text available July 1, 2023
  10. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended mathmore »questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training.« less
    Free, publicly-accessible full text available July 18, 2023