skip to main content

Search for: All records

Creators/Authors contains: "Hickman, Garrett"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a modeling method that incorporates full-wave electromagnetic simulations and radiation force calculations to evaluate the performance of grating chips for compact megneto-optical traps (MOTs).
  2. Abstract Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit (FoM) for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three different methods. Using this FoM and an optimization algorithm, we identified the optical bottle-beam traps based on a Gaussian beam illuminating a metasurface that are superior in terms of power efficiency than existing approaches. We numerically demonstrate a silicon metasurface for creating an optical bottle-beam trap.
  3. We investigate diffractive grating chips that can be used as part of a magneto-optical trap (MOT) to trap both Rb and Cs atoms with a single input beam for each atom species.

  4. We describe recent work towards a fully-integrated single-photon source based on the use of single atoms captured from a grating magneto-optical trap (GMOT). Single Rb atoms from a ber-coupled GMOT will be loaded into an optical dipole trap formed by light from an integrated polarization-maintaining (PM) ber. Trapped single atoms will be excited to the 2P1/2 state using resonant light. The resulting single-photon fluorescence will be collected through the same PM ber as is used for trapping, and routed to further experiments. We describe progress towards an intermediate imple- mentation incorporating integrated optical bers and free space light sources. The completed, fully-integrated single-photon source will have numerous applications in quantum communications and quantum information processing, and particularly in improvement of the performance of quantum key distribution systems.
  5. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT.
  6. We present progress in demonstrating Rydberg interactions between a single Rb and a single Cs atom simultaneously trapped in a single 976 nm optical tweezer. Rydberg lev- els in heteronuclear systems have different quantum defects, as opposed to homonuclear systems, and can therefore be chosen to minimize the Forster defect and increase the Rydberg interaction strength beyond symmetric Rydberg pairs at comparable energy levels. Additionally, multi-species systems are distinguishable and can be frequency multi- plexed in a straightforward manner. Frequency multiplexing both the state preparation and state readout is used in characterizing elastic and inelastic collision rates between Rb and Cs, as well as enabling crosstalk free ancilla measurements for quantum error correction.