skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hille Ris Lambers, Janneke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stem‐mapped forest stands offer important opportunities for investigating the fine‐scale spatial processes occurring in forest ecosystems. These stands are areas of the forest where the precise locations and repeated size measurements of each tree are recorded, thereby enabling the calculation of spatially‐explicit metrics of individual growth rates and of the entire tree community. The most common use of these datasets is to investigate the drivers of variation in forest processes by modeling tree growth rate or mortality as a function of these neighborhood metrics. However, neighborhood metrics could also serve as important covariates of many other spatially variable forest processes, including seedling recruitment, herbivory and soil microbial community composition. Widespread use of stem‐mapped forest stand datasets is currently hampered by the lack of standardized, efficient and easy‐to‐use tools to calculate tree dynamics (e.g. growth, mortality) and the neighborhood metrics that impact them. We present the forestexplorR package that facilitates the munging, exploration, visualization and analysis of stem‐mapped forest stands. By providing flexible, user‐friendly functions that calculate neighborhood metrics and implement a recently‐developed rapid‐fitting tree growth and mortality model, forestexplorR broadens the accessibility of stem‐mapped forest stand data. We demonstrate the functionality of forestexplorR by using it to investigate how the species identity of neighboring trees influences the growth rates of three common tree species in Mt Rainier National Park, WA, USA. forestexplorR is designed to facilitate researchers to incorporate spatially‐explicit descriptions of tree communities in their studies and we expect this increased diversity of contributors to develop exciting new ways of using stem‐mapped forest stand data. 
    more » « less
  2. Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins. 
    more » « less
  3. Neighborhood models have allowed us to test many hypotheses regarding the drivers of variation in tree growth, but require considerable computation due to the many empirically supported non-linear relationships they include. Regularized regression represents a far more efficient neighborhood modeling method, but it is unclear whether such an ecologically unrealistic model can provide accurate insights on tree growth. Rapid computation is becoming increasingly important as ecological datasets grow in size, and may be essential when using neighborhood models to predict tree growth beyond sample plots or into the future. We built a novel regularized regression model of tree growth and investigated whether it reached the same conclusions as a commonly used neighborhood model, regarding hypotheses of how tree growth is influenced by the species identity of neighboring trees. We also evaluated the ability of both models to interpolate the growth of trees not included in the model fitting dataset. Our regularized regression model replicated most of the classical model’s inferences in a fraction of the time without using high-performance computing resources. We found that both methods could interpolate out-of-sample tree growth, but the method making the most accurate predictions varied among focal species. Regularized regression is particularly efficient for comparing hypotheses because it automates the process of model selection and can handle correlated explanatory variables. This feature means that regularized regression could also be used to select among potential explanatory variables (e.g., climate variables) and thereby streamline the development of a classical neighborhood model. Both regularized regression and classical methods can interpolate out-of-sample tree growth, but future research must determine whether predictions can be extrapolated to trees experiencing novel conditions. Overall, we conclude that regularized regression methods can complement classical methods in the investigation of tree growth drivers and represent a valuable tool for advancing this field toward prediction. 
    more » « less
  4. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution. 
    more » « less
  5. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  6. Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size–fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models. 
    more » « less