skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery
Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.  more » « less
Award ID(s):
1754632 1754668 1655499 2045309 1754647 2025755 1831952 1655896 1745496 1754443 1748133 2306198 1754656 2224776 1636476
NSF-PAR ID:
10331185
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding potential limitations to tree regeneration is essential as rates of tree mortality increase in response to direct (extreme drought) and indirect (bark beetle outbreaks, wildfire) effects of a warming climate. Seed availability is increasingly recognized as an important limitation for tree regeneration. High variability in seed cone production is a trait common among many northern temperate conifers, but few studies examine the determinants of individual tree cone production and how they vary with stand structure. In subalpine forests in the southern Rocky Mountains, USA, we monitored >1600Picea engelmannii(Engelmann spruce) andAbies lasiocarpa(subalpine fir) trees for cone presence (an indicator of reproductive maturity) and a subset of those trees for cone abundance (an indicator of seed production) from 2016 to 2018. We constructed mixed models to test how individual tree cone presence and cone abundance were affected by tree size and age as well as forest attributes at the neighborhood‐ and stand‐scales. The probability of cone presence and cone abundance increased with tree size and age forA. lasiocarpaandP. engelmannii. The youngest ages of trees with cones present were more than 100 yr later for individuals in high basal area (BA) stands (>65 m2/ha) relative to low BA stands (<25 m2/ha).P. engelmanniiproduced many more cones thanA. lasiocarpaat similar sizes, especially in young, low BA stands. Our findings reveal how differences in tree sizes and stand structures typically associated with time since last disturbance can affect seed production patterns for decades to well over a century. The consistent regional pattern of earlier and more abundant postfire establishment ofP. engelmannniivs. the delayed postfire establishment byA. lasiocarpamay be partially explained by species’ differences in cone abundance by stand structure. The increasing loss of large, dominant cone‐producing trees will significantly reduce seed production to support future tree regeneration and maintain forest cover. However, seed availability and resilience following disturbances may be less limiting than expected for species likeP. engelmanniithat have the capacity to produce more cones in open‐canopy forests, such as recently disturbed areas.

     
    more » « less
  2. Abstract

    Pioneer trees require high‐light environments for successful seedling establishment. Consequently, seeds of these species often persist in the soil seed bank (SSB) for periods ranging from several weeks to decades. How they survive despite extensive pressure from seed predators and soil‐borne pathogens remains an intriguing question.

    This study aims to test the hypotheses that decades‐old seeds collected from the SSB in a lowland tropical forest remain viable by (i) escaping infection by fungi, which are major drivers of seed mortality in tropical soils, and/or (ii) maintaining high levels of seed dormancy and seed coat integrity when compared to inviable seeds.

    We collected seeds ofTrema micranthaandZanthoxylum ekmaniiat Barro Colorado Island, Panama, from sites where adult trees previously occurred in the past 30 years. We used carbon dating to measure seed age and characterized seed coat integrity, seed dormancy and fungal communities.

    Viable seeds from the SSB ranged in age from 9 to 30 years forT. micrantha, and 5 to 33 years forZ. ekmanii. We found no evidence that decades‐old seeds maintain high levels of seed dormancy or seed coat integrity. Fungi were rarely detected in fresh seeds (no soil contact), but phylogenetically diverse fungi were detected often in seeds from the SSB. Although fungal infections were more commonly detected in inviable seeds than in viable seeds, a lack of differences in fungal diversity and community composition between viable and inviable seeds suggested that viable seeds are not simply excluding fungal species to survive long periods in the SSB.

    Synthesis.Our findings reveal the importance of a previously understudied aspect of seed survival, where the impact of seed–microbial interactions may be critical to understand long‐term persistence in the SSB.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Seed distribution and deposition patterns around parent trees are strongly affected by functional traits and therefore influence the development of plant communities. To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain, we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain. Among 480,598 seeds belonging to 12 families, 17 genera, and 26 species were identified, only 54% of the species with mature trees in the community were represented in seeds collected over the 9 years, indicating a limitation in seed dispersal. Understory species were most limited; overstory species were least limited. Species with wind-dispersed seed had the least limitation, while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species; fleshy-fruited species had stronger dispersal limitations than dry-fruited species. Generalized linear mixed models showed that relative basal area had a significant positive effect on seed abundance in traps, while the contribution of diaspore traits was low for nearly all groups. These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here. These findings strengthen the knowledge that tree traits are key in explaining seed deposition patterns, at least at the primary dispersal stage. This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests. 
    more » « less
  4. Abstract

    Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.

    Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.

    Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.

    We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.

    Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.

    Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.

    Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.

     
    more » « less
  5. 1. Some interactions previously described as mutualistic were revealed to be commensal or parasitic in subsequent investigations. Ant‐mediated seed dispersal has been described as a mutualism for more than a century; however, recent research suggests that it may be commensal or parasitic. Plants demonstrably benefit from ant‐mediated seed dispersal, although there is little evidence available to demonstrate that the interaction benefits long‐term ant fitness.

    2. Field experiments were conducted in temperate North America focused on a key seed‐dispersing ant. All herbaceous plants were removed from a forest understorey for 13 years, and supplemented ant colonies with large elaiosome‐bearing seeds aiming to examine potential long‐ and short‐term myrmecochorous plant benefits for the ants.

    3. If elaiosome‐bearing seeds benefit ants, suggesting a mutualistic relationship, it is expected that there would be greater worker and/or alate abundance and greater fat reserves (colony lipid content) with seed supplementation (short‐term) and in areas with high understorey herb abundance.

    4. Short‐term seed supplementation of ant colonies did not result in an increase with respect to numbers or fat stores, although it did prompt the production of colony sexuals, which is a potential fitness benefit. In the long term, however, there was no positive effect on the ants and, instead, there were negative effects because the removal of elaiosome‐bearing plants corresponded with greater colony health.

    5. The data obtained in the present study suggest that the ant–plant interaction ranged from occasionally beneficial to neutral to overall negative for the ant partner. Such results did not support considering the interaction as a mutualism. Collectively, the data suggest the need to reconsider the nature of the relationship between these ants and plants.

     
    more » « less