skip to main content

This content will become publicly available on December 1, 2023

Title: Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery
Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1754632 1754668 1655499 2045309 1754647 2025755 1831952 1655896 1745496
Publication Date:
NSF-PAR ID:
10331185
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Sponsoring Org:
National Science Foundation
More Like this
  1. Seed distribution and deposition patterns around parent trees are strongly affected by functional traits and therefore influence the development of plant communities. To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain, we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain. Among 480,598 seeds belonging to 12 families, 17 genera, and 26 species were identified, only 54% of the species with mature trees in the community were represented in seeds collected over the 9 years, indicating a limitation in seed dispersal. Understory species were most limited; overstory species were least limited. Species with wind-dispersed seed had the least limitation, while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species; fleshy-fruited species had stronger dispersal limitations than dry-fruited species. Generalized linear mixed models showed that relative basal area had a significant positive effect on seed abundance in traps, while the contribution of diaspore traits was low for nearly all groups. These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here.more »These findings strengthen the knowledge that tree traits are key in explaining seed deposition patterns, at least at the primary dispersal stage. This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests.« less
  2. Abstract Background and Aims In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. Methods We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. Key Results Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. Conclusions Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn impliesmore »that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants.« less
  3. Symbiotic nitrogen (N)-fixing trees supply significant N inputs to forest ecosystems, leading to increased soil fertility, forest growth, and carbon storage. Rapid growth and stoichiometric constraints of N fixers also create high demands for rock-derived nutrients such as phosphorus (P), while excess fixed N can generate acidity and accelerate leaching of rock-derived nutrients such as calcium (Ca). This ability of N-fixing trees to accelerate cycles of Ca, P, and other rock-derived nutrients has fostered speculation of a direct link between N fixation and mineral weathering in terrestrial ecosystems. However, field evidence that N-fixing trees have enhanced access to rock-derived nutrients is lacking. Here we use strontium (Sr) isotopes as a tracer of nutrient sources in a mixed-species temperate rainforest to show that N-fixing trees access more rock-derived nutrients than nonfixing trees. The N-fixing tree red alder (Alnus rubra), on average, took up 8 to 18% more rock-derived Sr than five co-occurring nonfixing tree species, including two with high requirements for rock-derived nutrients. The increased access to rock-derived nutrients occurred despite spatial variation in community‐wide Sr sources across the forest, and only N fixers had foliar Sr isotopes that differed significantly from soil exchangeable pools. We calculate that increased uptake ofmore »rock-derived nutrients by N-fixing alder requires a 64% increase in weathering supply of nutrients over nonfixing trees. These findings provide direct evidence that an N-fixing tree species can also accelerate nutrient inputs from rock weathering, thus increasing supplies of multiple nutrients that limit carbon uptake and storage in forest ecosystems.

    « less
  4. Populations of many tree species exhibit synchronous and highly temporally variable seed crops across years. This is called mast seeding, and there are two predominant hypotheses for this pattern of reproduction: pollination efficiency and seed-predator satiation. Mast seeding studies typically involve records of population-level reproduction, with less information on the characteristics of reproductive structures. Here, we use data across 6 years (2012–2017), spanning a range of population-level cone conditions, to characterize (i) white spruce (Picea glauca (Moench) Voss) cone lengths and seeds per cone, and (ii) levels of seed predation. We quantified population-level cone production and collected 1399 cones from a total of 38 trees in the Huron Mountains, Michigan, USA. Linear mixed models showed that mean and minimum cone lengths varied significantly across years; both being longest during the greatest cone production year. Larger cones had more seeds and the slopes of the relationships as well as the intercepts varied significantly across years. Generalized linear mixed models and Akaike’s information criterion model selection showed that cones with insect predation damage was greatest when population-level reproduction was the lowest, with a mean proportion of cones damaged 0.82 in that year. Our findings show that white spruce cone characteristics and lossesmore »to insect seed predation vary temporally, and follow expectations based on mast seeding hypotheses.« less
  5. The Janzen–Connell hypothesis is a well-known explanation for why tropical forests have large numbers of tree species. A fundamental prediction of the hypothesis is that the probability of adult recruitment is less in regions of high conspecific adult density, a pattern mediated by density-dependent mortality in juvenile life stages. Although there is strong evidence in many tree species that seeds, seedlings, and saplings suffer conspecific density-dependent mortality, no study has shown that adult tree recruitment is negatively density dependent. Density-dependent adult recruitment is necessary for the Janzen–Connell mechanism to regulate tree populations. Here, we report density-dependent adult recruitment in the population ofHandroanthus guayacan, a wind-dispersed Neotropical canopy tree species. We use data from high-resolution remote sensing to track individual trees with proven capacity to flower in a lowland moist forest landscape in Panama and analyze these data in a Bayesian framework similar to capture–recapture analysis. We independently quantify probabilities of adult tree recruitment and detection and show that adult recruitment is negatively density dependent. The annualized probability of adult recruitment was 3.03% ⋅ year−1. Despite the detection of negative density dependence in adult recruitment, it was insufficient to stabilize the adult population ofH. guayacan, which increased significantly in size overmore »the decade of observation.

    « less