skip to main content

Search for: All records

Creators/Authors contains: "Hoffmann, Axel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Antiferromagnetic oxides have recently gained much attention because of the possibility to manipulate electrically and optically the Néel vectors in these materials. Their ultrafast spin dynamics, long spin diffusion length and immunity to large magnetic fields make them attractive candidates for spintronic applications. Additionally, there have been many studies on spin wave and magnon transport in single crystals of these oxides. However, the successful applications of the antiferromagnetic oxides will require similar spin transport properties in thin films. In this work, we systematically show the sputtering deposition method for two uniaxial antiferromagnetic oxides, namely Cr2O3 and α-Fe2O3, on A-plane sapphire substrates, and identify the optimized deposition conditions for epitaxial films with low surface roughness. We also confirm the antiferromagnetic properties of the thin films. The deposition method developed in this article will be important for studying the magnon transport in these epitaxial antiferromagnetic thin films.
  4. Pure spin currents can be generated via thermal excitations of magnons. These magnon spin currents serve as carriers of information in insulating materials, and controlling them using electrical means may enable energy efficient information processing. Here, we demonstrate electric field control of magnon spin currents in the antiferromagnetic insulator Cr 2 O 3 . We show that the thermally driven magnon spin currents reveal a spin-flop transition in thin-film Cr 2 O 3 . Crucially, this spin-flop can be turned on or off by applying an electric field across the thickness of the film. Using this tunability, we demonstrate electric field–induced switching of the polarization of magnon spin currents by varying only a gate voltage while at a fixed magnetic field. We propose a model considering an electric field–dependent spin-flop transition, arising from a change in sublattice magnetizations via a magnetoelectric coupling. These results provide a different approach toward controlling magnon spin current in antiferromagnets.
  5. Abstract

    Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation. The generated THz radiation exhibits an asymmetric intensity toward forward and backward emission direction whose directionality can be mutually controlled by the direction of applied magnetic field and linear polarization of the laser pulse. Our work demonstrates the capability for the coherent control of THz emission from 2D-HMHs, enabling their promising applications on the ultrafast timescale as solution-processed material candidates for future THz emitters.