skip to main content


Search for: All records

Creators/Authors contains: "Hoffmann, Fabian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The processing of aerosol by droplet collision‐coalescence is analyzed in three‐dimensional simulations of drizzling stratocumulus using a Lagrangian cloud model for the representation of aerosol and cloud microphysics. Collision‐coalescence processing is shown to create a characteristic bimodality in the aerosol size distribution. We show that the large‐scale dynamics of the stratocumulus‐topped boundary layer are key to understanding the amount of time available for collision‐coalescence processing. The large‐scale dynamics enable aerosol particles to repeat a cycle of droplet condensation, collision‐coalescence, and evaporation, which causes a steady increase in aerosol size. This process is continued until the aerosol grows so large that droplet growth is substantially accelerated and multiple collisions occur within one cycle, forming precipitation‐sized droplets that are lost to the surface, including the aerosol. An analytical relationship is derived that captures the fundamental shape of the processed aerosol size distribution.

     
    more » « less
  2. Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today’s climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research—field and laboratory experiments, monitoring, and numerical modeling across a range of scales. 
    more » « less
    Free, publicly-accessible full text available March 22, 2025
  3. Abstract

    Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large‐eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey‐type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze‐capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the Twomey‐type CCN‐based bin microphysics scheme in which haze particles are not fully resolved. We find that results from the haze‐capable bin microphysics scheme agree well with those from the Lagrangian microphysics scheme. However, both schemes significantly differ from those from a CCN‐based bin microphysics scheme unless CCN recycling is considered. Haze particles from the recycling of deactivated cloud droplets can strongly enhance cloud droplet number concentration due to a positive feedback in haze‐cloud interactions in the cloud chamber. Haze particle size distributions are more realistic when considering solute and curvature effects that enable representing the complete physics of the activation process. Our study suggests that haze particles and their interactions with cloud droplets may have a strong impact on cloud properties when supersaturation fluctuations are comparable to mean supersaturation, as is the case in the cloud chamber and likely is the case in the atmosphere, especially in polluted conditions.

     
    more » « less