skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hone, James C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer WSe 2 in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that WSe 2 realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. When combined with nanostructured substrates, two-dimensional semiconductors can be engineered with strain to tailor light–matter interactions on the nanoscale. Recently, room-temperature nanoscale exciton localization with controllable wrinkling in 1L-WSe2 was achieved using arrays of gold nanocones. Here, the characterization of quantum dot-like states and single-photon emitters in the 1L-WSe2/nanocone system is reported. The nanocones induce a wide range of strains, and as a result, a diverse ensemble of narrowband, potential single-photon emitters is observed. The distribution of emitter energies reveals that most reside in two spectrally isolated bands, leaving a less populated intermediate band that is spectrally isolated from the ensembles. The spectral isolation is advantageous for high-purity quantum light emitters, and anti-bunched emission from one of these states is confirmed up to 25 K. Although the spatial distribution of strain is expected to influence the orientation of the transition dipoles of the emitters, multimodal emission polarization anisotropy and atomic force microscopy reveal that the macroscopic orientation of the wrinkles is not a good predictor of dipole orientation. Finally, the emission is found to change with thermal cycling from 4 to 290 K and back to 4 K, highlighting the need to control factors such as temperature-induced strain to enhance the robustness of this quantum emitter platform. The initial characterization here shows that controlled nanowrinkles of 1L-WSe2 generate quantum light in addition to uncovering potential challenges that need to be addressed for their adoption into quantum photonic technologies. 
    more » « less
    Free, publicly-accessible full text available July 28, 2025
  4. Abstract Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems. 
    more » « less
  5. Abstract The bandwidth-tuned Wigner-Mott transition is an interaction-driven phase transition from a generalized Wigner crystal to a Fermi liquid. Because the transition is generally accompanied by both magnetic and charge-order instabilities, it remains unclear if a continuous Wigner-Mott transition exists. Here, we demonstrate bandwidth-tuned metal-insulator transitions at fixed fractional fillings of a MoSe 2 /WS 2 moiré superlattice. The bandwidth is controlled by an out-of-plane electric field. The dielectric response is probed optically with the 2s exciton in a remote WSe 2 sensor layer. The exciton spectral weight is negligible for the metallic state with a large negative dielectric constant. It continuously vanishes when the transition is approached from the insulating side, corresponding to a diverging dielectric constant or a ‘dielectric catastrophe’ driven by the critical charge dynamics near the transition. Our results support the scenario of continuous Wigner-Mott transitions in two-dimensional triangular lattices and stimulate future explorations of exotic quantum phases in their vicinities. 
    more » « less