skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hong, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although the tropical intraseaonal variability (TISV), as the most important predictability sources for subseasonal-to-seasonal (S2S) prediction, is dominated by Madden-Julian oscillation (MJO), its significant fraction does not always share the canonical MJO features, especially when the convective activity arrives at Maritime Continent. In this study, using principal oscillation pattern (POP) analysis on the combined fields of daily equatorial convection and zonal wind, two distinct leading TISV modes with relatively slower e-folding decay rates are identified. One is an oscillatory mode with the period of 51 days and e-folding time of 19 days, capturing the eastward propagating (EP) feature of the canonical MJO. The other is a non-oscillatory damping mode with e-folding time of 13.6 days, capturing a standing dipole (SD) with convection anomalies centered over the Maritime Continent and tropical central Pacific, respectively. Compared to the EP mode, the leading moisture anomalies at low level to the east of convection center are diminish for the SD mode, and instead, the strong negative anomalies of moisture and subsidence motion emerge in the tropical central Pacific area, which may be responsible for the distinct propagation features. Without filtering methods used, timeseries of the two POPs could be applied to the real-time monitoring of EP and SD events in the phase-space diagram. The two modes can serve as the simple and objective approach for a better characterization for diverse natures of TISV beyond the canonical MJO description, which may further shed light on dynamics of the TISV and its predictability. 
    more » « less
  2. The Pacific–North American (PNA) teleconnection pattern is one of the prominent atmospheric circulation modes in the extratropical Northern Hemisphere, and its seasonal to interannual predictability is suggested to originate from El Niño–Southern Oscillation (ENSO). Intriguingly, the PNA teleconnection pattern exhibits variance at near-annual frequencies, which is related to a rapid phase reversal of the PNA pattern during ENSO years, whereas the ENSO sea surface temperature (SST) anomalies in the tropical Pacific are evolving much slower in time. This distinct seasonal feature of the PNA pattern can be explained by an amplitude modulation of the interannual ENSO signal by the annual cycle (i.e., the ENSO combination mode). The ENSO-related seasonal phase transition of the PNA pattern is reproduced well in an atmospheric general circulation model when both the background SST annual cycle and ENSO SST anomalies are prescribed. In contrast, this characteristic seasonal evolution of the PNA pattern is absent when the tropical Pacific background SST annual cycle is not considered in the modeling experiments. The background SST annual cycle in the tropical Pacific modulates the ENSO-associated tropical Pacific convection response, leading to a rapid enhancement of convection anomalies in winter. The enhanced convection results in a fast establishment of the large-scale PNA teleconnection during ENSO years. The dynamics of this ENSO–annual cycle interaction fills an important gap in our understanding of the seasonally modulated PNA teleconnection pattern during ENSO years. 
    more » « less
  3. Abstract We use the H41αrecombination line to create templates of the millimeter free–free emission in the ALMA-IMF continuum maps, which allows us to separate it from dust emission. This method complements spectral-index information and extrapolation from centimeter-wavelength maps. We use the derived maps to estimate the properties of up to 34 Hiiregions across the ALMA-IMF protoclusters. The hydrogen ionizing photon rateQ0and spectral types follow the evolutionary trend proposed by Motte et al. The youngest protoclusters lack detectable ionized gas, followed by protoclusters with increasing numbers of OB stars. The totalQ0increases from ∼1045s−1to >1049s−1. We used the adjacent He41αline to measure the relative number abundances of helium, finding values consistent with the Galactic interstellar medium, although a few outliers are discussed. A search for sites of maser amplification of the H41αline returned negative results. We looked for possible correlations between the electron densities, emission measures, andQ0with Hiiregion sizeD. The latter is the best correlated, withQ0∝D2.49 ± 0.18. This favors interpretations in which smaller ultracompact Hiiregions are not necessarily the less dynamically evolved versions of larger ones but rather are ionized by less massive stars. Moderate correlations were found between the dynamical width ΔVdynwithDandQ0. ΔVdynincreases from about 1 to 2 times the ionized-gas sound speed. Finally, an outlier Hiiregion south of W43-MM2 is discussed. We suggest that this source could harbor an embedded stellar or disk wind. 
    more » « less
  4. Abstract RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure–function field. 
    more » « less
  5. Abstract We present the combination of ALMA-IMF and single-dish continuum images from the MUSTANG-2 Galactic Plane Survey (MGPS90) at 3 mm and the Bolocam Galactic Plane Survey (BGPS) at 1 mm. Six and 10 out of the 15 ALMA-IMF fields are combined with MGPS90 and BGPS, respectively. The combination is made via the feathering technique. We used thedendrogramalgorithm throughout the combined images, and performed further analysis in the six fields with the combination in both bands (G012.80, W43-MM1, W43-MM2, W43-MM3, W51-E, W51-IRS2). In these fields, we calculated spectral index maps and used them to separate regions dominated by dust or free–free emission, and then performed further structural analysis. We report the basic physical parameters of the dust-dominated (column densities, masses) and ionized (emission measures, hydrogen ionization photon rates) structures. We also searched for multiscale relations in the dust-dominated structures across the analyzed fields, finding that the fraction of mass in dendrogram leaves (which we label leaf mass efficiency (LME)) as a function of molecular gas column density follows a similar trend: a rapid, exponential-like growth, with maximum values approaching 100% in most cases. The observed behavior of the LME with the gas column is tentatively interpreted as an indicator of large star formation activity within the ALMA-IMF protoclusters. W51-E and G012.80 stand out as cases with comparatively large and reduced potential for further star formation, respectively. 
    more » « less
  6. RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomena can drive liquid–liquid phase separation, either solely from RNA–RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base-pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate how external conditions experienced by living organisms can influence the formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base-pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants, and other organisms. 
    more » « less
  7. Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions. 
    more » « less