skip to main content

Search for: All records

Creators/Authors contains: "Hou, I-Hong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies a remote sensing system where multiple wireless sensors generate possibly noisy information updates of various surveillance fields and delivering these updates to a control center over a wireless network. The control center needs a sufficient number of recently generated information updates to have an accurate estimate of the current system status, which is critical for the control center to make appropriate control decisions. The goal of this work is then to design the optimal policy for scheduling the transmissions of information updates. Through Brownian approximation, we demonstrate that the control center’s ability to make accurate real-time estimates depends on the averages and temporal variances of the delivery processes. We then formulate a constrained optimization problem to find the optimal means and variances. We also develop a simple online scheduling policy that employs the optimal means and variances to achieve the optimal system-wide performance. Simulation results show that our scheduling policy enjoys fast convergence speed and better performance when compared to other state-of-the-art policies.
  2. This paper presents a Brownian-approximation framework to optimize the quality of experience (QoE) for real-time video streaming in wireless networks. In real-time video streaming, one major challenge is to tackle the natural tension between the two most critical QoE metrics: playback latency and video interruption. To study this trade-off, we first propose an analytical model that precisely captures all aspects of the playback process of a real-time video stream, including playback latency, video interruptions, and packet dropping. Built on this model, we show that the playback process of a real-time video can be approximated by a two-sided reflected Brownian motion. Through such Brownian approximation, we are able to study the fundamental limits of the two QoE metrics and characterize a necessary and sufficient condition for a set of QoE performance requirements to be feasible. We propose a scheduling policy that satisfies any feasible set of QoE performance requirements and then obtain simple rules on the trade-off between playback latency and the video interrupt rates, in both heavy-traffic and under-loaded regimes. Finally, simulation results verify the accuracy of the proposed approximation and show that the proposed policy outperforms other popular baseline policies.
  3. A significant challenge for future virtual reality (VR) applications is to deliver high quality-of-experience, both in terms of video quality and responsiveness, over wireless networks with limited bandwidth. This paper proposes to address this challenge by leveraging the predictability of user movements in the virtual world. We consider a wireless system where an access point (AP) serves multiple VR users. We show that the VR application process consists of two distinctive phases, whereby during the first (proactive scheduling) phase the controller has uncertain predictions of the demand that will arrive at the second (deadline scheduling) phase. We then develop a predictive scheduling policy for the AP that jointly optimizes the scheduling decisions in both phases. In addition to our theoretical study, we demonstrate the usefulness of our policy by building a prototype system. We show that our policy can be implemented under Furion, a Unity-based VR gaming software, with minor modifications. Experimental results clearly show visible difference between our policy and the default one. We also conduct extensive simulation studies, which show that our policy not only outperforms others, but also maintains excellent performance even when the prediction of future user movements is not accurate.
  4. This paper considers a wireless network where multiple flows are delivering status updates about their respective information sources. An end user aims to make accurate real-time estimations about the status of each information source using its received packets. As the accuracy of estimation is most impacted by events in the recent past, we propose to measure the credibility of an information flow by the number of timely deliveries in a window of the recent past, and say that a flow suffers from a loss-of-credibility (LoC) if this number is insufficient for the end user to make an accurate estimation. We then study the problem of minimizing the system-wide LoC in wireless networks where each flow has different requirement and link quality. We show that the problem of minimizing the system-wide LoC requires the control of temporal variance of timely deliveries for each flow. This feature makes our problem significantly different from other optimization problems that only involves the average of control variables. Surprisingly, we show that there exists a simple online scheduling algorithm that is near-optimal. Simulation results show that our proposed algorithm is significantly better than other state-of-the-art policies.
  5. We study the problem of broadcasting realtime flows in multi-hop wireless networks. We assume that each packet has a stringent deadline, and each node in the network obtains some utility based on the number of packets delivered to it on time for each flow. We propose a distributed protocol called the delegated-set routing (DSR) that incurs virtually no overhead of coordination among nodes. We also develop distributed algorithms that aim to maximize the total timely utility under DSR. The utility of the DSR protocol and distributed algorithms are demonstrated by both theoretical analysis and simulation results. We show that our algorithms achieve higher timely throughput even when compared against centralized throughput optimal policies that do not consider deadline constraints.