Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 10, 2025
-
Free, publicly-accessible full text available October 14, 2025
-
Free, publicly-accessible full text available October 15, 2025
-
Free, publicly-accessible full text available July 15, 2025
-
Free, publicly-accessible full text available July 21, 2025
-
ABSTRACT The aim of this paper is to systematically investigate merging and ensembling methods for spatially varying coefficient mixed effects models (SVCMEM) in order to carry out integrative learning of neuroimaging data obtained from multiple biomedical studies. The ”merged” approach involves training a single learning model using a comprehensive dataset that encompasses information from all the studies. Conversely, the ”ensemble” approach involves creating a weighted average of distinct learning models, each developed from an individual study. We systematically investigate the prediction accuracy of the merged and ensemble learners under the presence of different degrees of interstudy heterogeneity. Additionally, we establish asymptotic guidelines for making strategic decisions about when to employ either of these models in different scenarios, along with deriving optimal weights for the ensemble learner. To validate our theoretical results, we perform extensive simulation studies. The proposed methodology is also applied to 3 large-scale neuroimaging studies.
-
We present REGLO, a novel methodology for repairing pretrained neural networks to satisfy global robustness and individual fairness properties. A neural network is said to be globally robust with respect to a given input region if and only if all the input points in the region are locally robust. This notion of global robustness also captures the notion of individual fairness as a special case. We prove that any counterexample to a global robustness property must exhibit a corresponding large gradient. For ReLU networks, this result allows us to efficiently identify the linear regions that violate a given global robustness property. By formulating and solving a suitable robust convex optimization problem, REGLO then computes a minimal weight change that will provably repair these violating linear regions.
Free, publicly-accessible full text available March 25, 2025 -
Free, publicly-accessible full text available March 1, 2025
-
Large-scale imaging studies often face challenges stemming from heterogeneity arising from differences in geographic location, instrumental setups, image acquisition protocols, study design, and latent variables that remain undisclosed. While numerous regression models have been developed to elucidate the interplay between imaging responses and relevant covariates, limited attention has been devoted to cases where the imaging responses pertain to the domain of shape. This adds complexity to the problem of imaging heterogeneity, primarily due to the unique properties inherent to shape representations, including nonlinearity, high-dimensionality, and the intricacies of quotient space geometry. To tackle this intricate issue, we propose a novel approach: a shape-on-scalar regression model that incorporates confounder adjustment. In particular, we leverage the square root velocity function to extract elastic shape representations which are embedded within the linear Hilbert space of square integrable functions. Subsequently, we introduce a shape regression model aimed at characterizing the intricate relationship between elastic shapes and covariates of interest, all while effectively managing the challenges posed by imaging heterogeneity. We develop comprehensive procedures for estimating and making inferences about the unknown model parameters. Through real-data analysis, our method demonstrates its superiority in terms of estimation accuracy when compared to existing approaches.