Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soil moisture data assimilation (SM-DA) is a valuable approach for enhancing streamflow prediction in rainfall-runoff models. However, most studies have focused on incorporating remotely sensed SM, and their results strongly depend on the quality of satellite products. Compared with remote sensing products, in situ observed SM data provide greater accuracy and more effectively capture temporal fluctuations in soil moisture levels. Therefore, the effectiveness of SM-DA in improving streamflow prediction remains site-specific and requires further validation. Here, we employed the Ensemble Kalman filter (EnKF) to integrate daily SM into lumped and distributed approaches of the Xinanjiang (XAJ) hydrological model to assess the importance of SM-DA in streamflow prediction. We observed a general improvement in streamflow prediction after conducting SM-DA. Specifically, the Nash-Sutcliffe efficiency increased from 0.61 to 0.65 for the lumped and from 0.62 to 0.70 for the distributed approaches. Moreover, the efficiency of SM-DA exhibits seasonal variation, with in situ SM proving particularly valuable for streamflow prediction during the wet-cold season compared to the dry-warm season. Notably, daily SM data from deep layers exhibit a stronger capability to improve streamflow prediction compared to surface SM. This indicates the significance of deep SM information for streamflow prediction in mountain areas. Overall, this study effectively demonstrates the efficacy of assimilating SM data to improve hydrological models in streamflow prediction. These findings contribute to our understanding of the connection between SM, streamflow, and hydrological connectivity in headwater catchments.more » « lessFree, publicly-accessible full text available May 29, 2025
-
Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.more » « less
-
Summary Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal‐associated tree species in these relationships.Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees.Our study provides novel explanations for variations in diversity–productivity relationships by suggesting that tree–mycorrhiza interactions can shape productivity in mixed‐species forest ecosystems.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
Key Points A new semi‐analytical spin‐up (SASU) framework combines the default accelerated spin‐up method and matrix analytical algorithm SASU accelerates CLIM5 spin‐up by tens of times, becoming the fastest method to our knowledge SASU is applicable to most biogeochemical models and enables computationally costly study, for example, sensitivity analysismore » « less
-
Abstract Large across‐model spread in simulating land carbon (C) dynamics has been ubiquitously demonstrated in model intercomparison projects (MIPs), and became a major impediment in advancing climate change prediction. Thus, it is imperative to identify underlying sources of the spread. Here, we used a novel matrix approach to analytically pin down the sources of across‐model spread in transient peatland C dynamics in response to a factorial combination of two atmospheric CO 2 levels and five temperature levels. We developed a matrix‐based MIP by converting the C cycle module of eight land models (i.e., TEM, CENTURY4, DALEC2, TECO, FBDC, CASA, CLM4.5 and ORCHIDEE) into eight matrix models. While the model average of ecosystem C storage was comparable to the measurement, the simulation differed largely among models, mainly due to inter‐model difference in baseline C residence time. Models generally overestimated net ecosystem production (NEP), with a large spread that was mainly attributed to inter‐model difference in environmental scalar. Based on the sources of spreads identified, we sequentially standardized model parameters to shrink simulated ecosystem C storage and NEP to almost none. Models generally captured the observed negative response of NEP to warming, but differed largely in the magnitude of response, due to differences in baseline C residence time and temperature sensitivity of decomposition. While there was a lack of response of NEP to elevated CO 2 (eCO 2 ) concentrations in the measurements, simulated NEP responded positively to eCO 2 concentrations in most models, due to the positive responses of simulated net primary production. Our study used one case study in Minnesota peatland to demonstrate that the sources of across‐model spreads in simulating transient C dynamics can be precisely traced to model structures and parameters, regardless of their complexity, given the protocol that all the matrix models were driven by the same gross primary production and environmental variables.more » « less
-
Abstract Soils store more carbon than other terrestrial ecosystems 1,2 . How soil organic carbon (SOC) forms and persists remains uncertain 1,3 , which makes it challenging to understand how it will respond to climatic change 3,4 . It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss 5–7 . Although microorganisms affect the accumulation and loss of soil organic matter through many pathways 4,6,8–11 , microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes 12,13 . Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved 7,14,15 . Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.more » « less