Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 12, 2025
-
Growing interconnect bandwidth demand in large datacenters requires energy-efficient optical transceivers that operate with four-level pulse amplitude modulation (PAM4) to enable high per-wavelength data rates. Further increases in bandwidth density is possible by leveraging wavelength-division multiplexing (WDM), which optical link architectures based on silicon photonic microring modulators (MRMs) and drop filters inherently enable. This paper presents high-speed PAM4 transmitter and receiver front-ends implemented in a 28nm CMOS process that are co-designed with these silicon photonic optical devices to enable energy-efficient operation. The transmitter utilizes an optical digital-to-analog converter (DAC) approach with two PAM2 AC-coupled pulsed-cascode high-swing voltage-mode output stages to drive the MRM MSB/LSB segments. A 3.42Vppd output swing is achieved when operating at 80Gb/s PAM4 with an energy efficiency of 3.66pJ/bit. The receiver front-end interfaces with a silicon-germanium avalanche photodiode (APD) and utilizes a low-bandwidth input transimpedance amplifier followed by continuous-time linear equalizer and variable-gain amplifier stages. Biasing the APD to realize a gain of 2 allows for -7dBm optical modulation amplitude (OMA) sensitivity at 56Gb/s PAM4 with a BER=10-4 and an energy efficiency of 1.61pJ/bit. Experimental verification of the full PAM4 transceiver at 50Gb/s operation shows -4.66dBm OMA sensitivity at a BER~4x10-4.more » « lessFree, publicly-accessible full text available April 21, 2026
-
Herron, J. & (Ed.)This paper is part of a larger project seeking to create a sustainable infrastructure for engineering students to become STEM teachers in high-need schools. Induction programs are a key component for new teacher retention. A review of the literature and a systematic review of district partners' induction programs provide content for determining what components are needed for a supplemental induction program. One district focuses more on the expectations of mentors, and the other focuses more on new teacher expectations. The initial findings suggest including financial support for both mentors and mentees, providing university engineering faculty mentors, and opportunities for STEM mentees to collaborate.more » « less
An official website of the United States government

Full Text Available