skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ibarra, Daniel E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Improved understanding of hydroclimatic drivers in water-stressed regions enables more accurate forecasting of future climate change impacts. Lake Bonneville was the largest Pleistocene lake in western North America, with a maximum surface area of ~52,000 km2, before shrinking markedly to become the modern Great Salt Lake. After more than a century of study, the balance between enhanced precipitation and reduced evaporation as drivers of lake growth continues to be debated. Multiple studies identify precipitation as the main factor associated with the highest lake levels, but most proxies provide an estimate of net evaporation and cannot independently resolve precipitation from evaporation. Therefore, factors associated with lake size, growth, and retreat remain uncertain. This study uses the thermodynamically based carbonate clumped isotope geothermometer to estimate temperature, evaporation, and precipitation at Lake Bonneville from 23 to 16 thousand years ago (ka). Clumped isotope derived constraints on hydroclimate are also applied to assess the accuracy of regional climate model outputs. During transgressive and open phases of the lake, we find that regional and large-scale precipitation delivery were the driving factors of lake expansion. In contrast, at its maximum extent (~17.5 ka), Lake Bonneville was maintained via suppressed evaporation rates at 50% relative to modern while precipitation rates were similar to modern levels. 
    more » « less
  2. Understanding the role of humans as ‘ecosystem engineers’ requires a deep-time perspective rooted in evolutionary history and the fossil record. However, no con-ceptual framework exists for studying the rise of ecosystem engineering in deep time, requiring us to consider effects that fall outside the scope of traditional defini-tions. Here, we present a new framework applicable to both modern and ancient engineering-type effects. We propose a new term – ‘Earth system engineering’ – to describe biological processes that alter the structure and function of planetary spheres, and which combines core tenets of ecosystem engineering, niche construction, and legacy effects. We illustrate this framework using the fossil record, and show how it can be applied across the tree of life, and throughout Earth history. 
    more » « less
  3. Abstract The growth and decay of the Laurentide ice sheet altered the hydrological cycle over southwestern North America. While it is well‐documented that the last glacial was wetter and had isotopically lighter precipitation, much less information is available for prior glacials. Increased proxy coverage is needed to test climate models' ability to reconstruct these changes and to assess their predictive power for water availability in response to future climate change. Here, we present parallel precipitation isotope records spanning the last two glacial cycles from two large, proximal lakes in Utah, USA: Great Salt Lake and Bear Lake. We use plant waxn‐alkane δD as a proxy for precipitation δD (δDprecip) and find coherent glacial‐interglacial fluctuations in δDprecip, with a ∼30‰ D‐depletion during glacial maxima relative to interglacials. We find similar δDprecipvalues between the Holocene and Eemian, but at the lower‐pCO2MIS 7 interglacial, D‐enrichment is only weakly recorded at Great Salt Lake and absent at higher elevation Bear Lake. Comparison to regional proxy archives finds large‐scale coherence in regional hydroclimate change over the last two glacial cycles is best explained by thermodynamic processes, with increased rainout efficiency, isotopic fractionation, and snow in a colder atmosphere. Comparison of proxies to climate model experiments showed models considerably underestimate glacial lowering of precipitation isotopic values, but overestimate inland Rayleigh distillation. New and assembled proxy reconstructions provide greater temporal and spatial coverage as targets for model skill in capturing hydroclimate variations across the past two glacial cycles. 
    more » « less
  4. Abstract The North American craton interior preserves a >1 Ga history of near surface processes that inform ongoing debates regarding timing and drivers of continental‐scale deformation and erosion associated with far‐field orogenesis. We tested various models of structural inversion on a major segment of the Midcontinent Rift along the Douglas Fault in northern Wisconsin, which accommodated ≳10 km of total vertical displacement. U‐Pb detrital zircon and vein calcite Δ47/U‐Pb thermochronometry from the hanging wall constrain the majority of uplift (≳8.5 km) and deformation to 1052–1036 Ma during the Ottawan phase of the Grenvillian orogeny. Combined U‐Pb zircon dates, Δ47/U‐Pb calcite thermochronometry, and field data that document syn‐ to early post‐depositional deformation in the footwall constrain a second stage of uplift (1–1.5 km) ca. 995–980 Ma during the Rigolet phase of the Grenvillian orogeny. A minor phase of Appalachian far‐field orogenesis is associated with minimal thrust reactivation. Our combined analyses identified the 995–980 Ma Bayfield Group as a Grenvillian foreland basin with an original thickness 0.5–2 km greater than currently preserved. By quantifying flexural loading and other subsidence mechanisms along the Douglas Fault, we identify dynamic subsidence as a mechanism that could be consistent with the development of late‐Grenvillian transcontinental fluvial systems. Minimal post‐Grenvillian erosion (0.5–2 km) in this part of the craton interior has preserved the Bayfield Group and equivalent successions, limiting the magnitude of regional erosion that can be attributed to Neoproterozoic glaciation. 
    more » « less
  5. ABSTRACT RationaleStable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide crucial information for understanding Earth's climate history and environmental changes. Despite a growing interest in the oxygen isotope analysis of silicate clays and clay‐rich sediments, there lacks a consensus on the preparation and standardization of clay mineral samples. To improve the accuracy and interlaboratory comparisons of clay isotope measurements, especially those involving laser fluorination techniques, newly established kaolinite and smectite oxygen isotope standards are much needed. MethodsWe employed conventional nickel bomb fluorination combined with dual‐inlet isotope ratio mass spectrometry to establish precise δ18O and Δ′17O values for leached clay reference materials KGa‐1b and SHCa‐1, a kaolinite and a hectorite/smectite, respectively. We further measured leached KGa‐1b and SHCa‐1 pressed into pellets with a lithium fluoride as a binding agent for the laser fluorination method, allowing us to test the reproducibility between methods and utilize a standard laser chamber drift correction scheme. ResultsThe laser fluorination technique yielded highly precise and reproducible δ18O and Δ′17O measurements for the KGa‐1b and SHCa‐1, aligning with bomb values of δ18O. This confirms the method's reliability and comparability to conventional isotope measurement techniques while also stressing the importance of proper sample preparation and laser chamber drift corrections. ConclusionsThis study demonstrates that laser fluorination is an effective method for accurately measuring the stable oxygen isotope composition of silicate clays or clay‐rich sediments when corrected with known silicate clay standards. These methods offer a valuable methodology for future research and applications that will significantly improve our understanding of past climate and environmental conditions. 
    more » « less
  6. Southwestern North America is currently experiencing a multidecadal megadrought, with severe consequences for water resources. However, significant uncertainty remains about 21st century precipitation changes in this semi-arid region. Paleoclimatic records are essential for both contextualizing current change, and for helping constrain the sensitivity of regional hydroclimate to large-scale global climate. In this paper, we present a new 2.8 Ma to present compound-specific isotopic record from Clayton Valley, the site of a long-lived paleolake in the southern Great Basin. Hydrogen and carbon isotopes from terrestrial plant leaf waxes provide evidence of past shifts in rainfall seasonality as well as ecosystem structure, and help contextualize the formation of this lithium-rich lacustrine basin. Our results suggest that regional hydroclimates underwent a substantial reorganization at the Plio-Pleistocene boundary, especially between 2.6 and 2.0 Ma. In this interval, a reduced latitudinal temperature gradient in the North Pacific likely resulted in a northward shift in storm tracks, and a reduction in winter rainfall over the southern Great Basin. This occurred against a background of increased summer rainfall and a greater accumulation of lithium in the lake basin. Our interpretation is corroborated by a compilation of Plio-Pleistocene north Pacific sea surface temperature records, as well as an isotope-enabled model simulation. Overall, these results suggest that past shifts in rainfall seasonality helped set the stage for the development and dessication of lithium-rich lacustrine deposits. 
    more » « less
  7. The stable isotopic composition of soil-formed carbonate, and bulk geochemistry of preserved soil matrix, can provide regionally constrained records of hydroclimatic change throughout deep-time. The SK cores, spanning over 10 km of sediment drilled from the Songliao Basin in Northeast China, represent near continuous terrestrial deposition across the late Jurassic to early Paleogene. In this study we analyze SK-1n paleosol core samples spanning late Maastrichtian to early Danian to interpret the regional hydroclimate response to global climate change, concurrent with Deccan Traps volcanism and the Chicxulub impact. Building on numerous paleosol carbonate datasets from the Sifangtai and Mingshui formations, we present ~40 new carbonate clumped isotope measurements at ca. 10 – 20 kyr resolution between 66.3 to 65.5 Ma. We produce a new kernel-smoothed temperature record and estimate the δ18O of soil porewater (δ18Opw), and δ13C of soil CO2 (δ13Cs) from new and previously published datasets. Molecular weathering ratios, derived from bulk geochemistry, are used to reconstruct weathering (CIA-K), clay formation (Al/Si), soil drainage (Ba/Sr), and calculate mean annual precipitation (MAP) via established transfer functions. Preliminary results suggest elevated K-Pg boundary temperatures, averaging ~30 °C, that decline by ~10 °C over the following 500 kyr. Post-impact cooling may contribute to a negative δ18Ocarb excursion (-2.5‰) at ~65.8 Ma. Further, stable subhumid MAP (~1100 mm/yr) across the dataset suggests negligible amount effect influence. Mean δ18Opw (-6.9‰) is largely stable, and does not reflect regional monsoon seasonality. Instead, stable δ18Opw indicates a consistent moisture source, a potential persistent seasonal bias in carbonate formation. Binning all compiled δ18Opw by soil profile depth reveals statistically significant enrichment in the upper 60 cm of soil profiles, and accounts for variability in the δ18Opw (σ = 1.16‰). Soil respiration, modeled from δ13Cs, increases from ca. 700 to 2000 gC/m2/year across the K-Pg boundary, indicating increased productivity despite declining pCO2 and available phosphorus. Future work will expand the temporal range of isotopic measurements (~72 to 65 Ma) and contextualize our latest Cretaceous results within a spatial framework across Asia. 
    more » « less
  8. Silicate weathering and organic carbon (OC) burial in soil regulate atmospheric CO2, but their influence on each other remains unclear. Generally, OC oxidation can generate acids that drive silicate weathering, yet clay minerals that form during weathering can protect OC and limit oxidation. This poses a conundrum where clay formation and OC preservation either compete or cooperate. Debate remains about their relative contributions because quantitative tools to simultaneously probe these processes are lacking while those that exist are often not measured in concert. Here we demonstrate that Li isotope ratios of sediment, commonly used to trace clay formation, can help constrain OC cycling. Measurements of river suspended sediment from two watersheds of varying physiography and analysis of published data from Hawaii soil profiles show negative correlations between solid-phase d7Li values and OC content, indicating the association of clay mineral formation with OC accumulation. Yet, the localities differ in their ranges of d7Li values and OC contents, which we interpret with a model of soil formation. We find that temporal trends of Li isotopes and OC are most sensitive to mineral dissolution/clay formation rates, where higher rates yield greater OC stocks and lower d7Li values. Whereas OC-enhanced dissolution primarily dictates turnover times of OC and silicate minerals, clay protection distinctly modifies soil formation pathways and is likely required to explain the range of observations. These findings underscore clay mineral formation, driven primarily by bedrock chemistry and secondarily by climate, as a principal modulator of weathering fluxes and OC accumulation in soil. 
    more » « less
  9. Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R–O–CH3) in wood. Most methoxyl C–H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue13CH2D correlates with temperature (18–28 °C) and atmospheric [CO2] (280–1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood. 
    more » « less