skip to main content

Search for: All records

Creators/Authors contains: "Iranmanesh, Seyed Mehdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this gap, we propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model and support both adversarial and likelihood framework in a joint training manner which diversify the estimatedmore »density in order to cover different modes. We propose to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator (student) of a GAN model. A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach. We conduct extensive experiments on real-world datasets (i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effectiveness of the proposed HGAN under qualitative and quantitative evaluations. The experimental results show the superiority and competitiveness of our method compared to the baselines.« less
  3. In this paper, we present a deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. Polarization state information of thermal faces provides the missing textural and geometrics details in the thermal face imagery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The proposed architecture is able to make full use of themore »polarimetric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recognition methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embedding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superiority of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms.« less
  4. Elastic distortion of fingerprints has a negative effect on the performance of fingerprint recognition systems. This negative effect brings inconvenience to users in authentication applications. However, in the negative recognition scenario where users may intentionally distort their fingerprints, this can be a serious problem since distortion will prevent recognition system from identifying malicious users. Current methods aimed at addressing this problem still have limitations. They are often not accurate because they estimate distortion parameters based on the ridge frequency map and orientation map of input samples, which are not reliable due to distortion. Secondly, they are not efficient and requiringmore »significant computation time to rectify samples. In this paper, we develop a rectification model based on a Deep Convolutional Neural Network (DCNN) to accurately estimate distortion parameters from the input image. Using a comprehensive database of synthetic distorted samples, the DCNN learns to accurately estimate distortion bases ten times faster than the dictionary search methods used in the previous approaches. Evaluating the proposed method on public databases of distorted samples shows that it can significantly improve the matching performance of distorted samples.« less