skip to main content


Search for: All records

Creators/Authors contains: "Islam, Mohammad A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Significant power consumption is one of the major challenges for current and future high-performance computing (HPC) systems. All the while, HPC systems generally remain power underutilized, making them a great candidate for applying power oversubscription to reclaim unused capacity. However, an oversubscribed HPC system may occasionally get overloaded. In this paper, we propose MPR (Market-based Power Reduction), a scalable market-based approach where users actively participate in reducing the HPC system’s power consumption to mitigate overloads. In MPR, HPC users bid to supply, in exchange for incentives, the resource reduction required for handling the overloads. Using several real-world trace-based simulations, we extensively evaluate MPR and show that, by participating in MPR, users always receive more rewards than the cost of performance loss. At the same time, the HPC manager enjoys orders of magnitude more resource gain than her incentive payoff to the users. We also demonstrate the real-world effectiveness of MPR on a prototype system. 
    more » « less
  2. Server-level power monitoring in data centers can significantly contribute to its efficient management. Nevertheless, due to the cost of a dedicated power meter for each server, most data center power management only focuses on UPS or cluster-level power monitoring. In this paper, we propose a low-cost novel power monitoring approach that uses only one sensor to extract power consumption information of all servers. We utilize the conducted electromagnetic interference of server power supplies to measure its power consumption from non-intrusive single-point voltage measurement. Using a pair of commercial grade Dell PowerEdge servers, we demonstrate that our approach can estimate each server's power consumption with ~3% mean absolute percentage error. 
    more » « less
  3. null (Ed.)
    With the rapid development of the Internet of Things (IoT), computational workloads are gradually moving toward the internet edge for low latency. Due to significant workload fluctuations, edge data centers built in distributed locations suffer from resource underutilization and requires capacity underprovisioning to avoid wasting capital investment. The workload fluctuations, however, also make edge data centers more suitable for battery-assisted power management to counter the performance impact due to underprovisioning. In particular, the workload fluctuations allow the battery to be frequently recharged and made available for temporary capacity boosts. But, using batteries can overload the data center cooling system which is designed with a matching capacity of the power system. In this paper, we design a novel power management solution, DeepPM, that exploits the UPS battery and cold air inside the edge data center as energy storage to boost the performance. DeepPM uses deep reinforcement learning (DRL) to learn the data center thermal behavior online in a model-free manner and uses it on-the-fly to determine power allocation for optimum latency performance without overheating the data center. Our evaluation shows that DeepPM can improve latency performance by more than 50% compared to a power capping baseline while the server inlet temperature remains within safe operating limits (e.g., 32°C). 
    more » « less
  4. Attacks based on power analysis have been long existing and studied, with some recent works focused on data exfiltration from victim systems without using conventional communications (e.g., WiFi). Nonetheless, prior works typically rely on intrusive direct power measurement, either by implanting meters in the power outlet or tapping into the power cable, thus jeopardizing the stealthiness of attacks. In this paper, we propose NoDE (Noise for Data Exfiltration), a new system for stealthy data exfiltration from enterprise desktop computers. Specifically, NoDE achieves data exfiltration over a building's power network by exploiting high-frequency voltage ripples (i.e., switching noises) generated by power factor correction circuits built into today's computers. Located at a distance and even from a different room, the receiver can non-intrusively measure the voltage of a power outlet to capture the high-frequency switching noises for online information decoding without supervised training/learning. To evaluate NoDE, we run experiments on seven different computers from top vendors and using top-brand power supply units. Our results show that for a single transmitter, NoDE achieves a rate of up to 28.48 bits/second with a distance of 90 feet (27.4 meters) without the line of sight, demonstrating a practically stealthy threat. Based on the orthogonality of switching noise frequencies of different computers, we also demonstrate simultaneous data exfiltration from four computers using only one receiver. Finally, we present a few possible defenses, such as installing noise filters, and discuss their limitations. 
    more » « less