skip to main content

Search for: All records

Creators/Authors contains: "Iwahana, Go"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accelerating erosion of the Alaska Beaufort Sea coast is increasing inputs of organic matter from land to the Arctic Ocean, and improved estimates of organic matter stocks in eroding coastal permafrost are needed to assess their mobilization rates under contemporary conditions. We collected three permafrost cores (4.5–7.5 m long) along a geomorphic gradient near Drew Point, Alaska, where recent erosion rates average 17.2 m year −1 . Down-core patterns indicate that organic-rich soils and lacustrine sediments (12–45% total organic carbon; TOC) in the active layer and upper permafrost accumulated during the Holocene. Deeper permafrost (below 3 m elevation) mainly consists of Late Pleistocene marine sediments with lower organic matter content (∼1% TOC), lower C:N ratios, and higher δ 13 C values. Radiocarbon-based estimates of organic carbon accumulation rates were 11.3 ± 3.6 g TOC m −2  year −1 during the Holocene and 0.5 ± 0.1 g TOC m −2  year −1 during the Late Pleistocene (12–38 kyr BP). Within relict marine sediments, porewater salinities increased with depth. Elevated salinity near sea level (∼20–37 in thawed samples) inhibited freezing despite year-round temperatures below 0°C. We used organic matter stock estimates from the cores in combination with remote sensing time-series data to estimate carbon fluxes for a 9 km stretch of coastlinemore »near Drew Point. Erosional fluxes of TOC averaged 1,369 kg C m −1  year −1 during the 21st century (2002–2018), nearly doubling the average flux of the previous half-century (1955–2002). Our estimate of the 21st century erosional TOC flux year −1 from this 9 km coastline (12,318 metric tons C year −1 ) is similar to the annual TOC flux from the Kuparuk River, which drains a 8,107 km 2 area east of Drew Point and ranks as the third largest river on the North Slope of Alaska. Total nitrogen fluxes via coastal erosion at Drew Point were also quantified, and were similar to those from the Kuparuk River. This study emphasizes that coastal erosion represents a significant pathway for carbon and nitrogen trapped in permafrost to enter modern biogeochemical cycles, where it may fuel food webs and greenhouse gas emissions in the marine environment.« less
  2. Abstract
    Permafrost cores (4.5-7.5 m long) were collected April 10th-19th, 2018, along a geomorphic gradient near Drew Point, Alaska to characterize active layer and permafrost geochemistry and material properties. Cores were collected from a young drained lake basin, an ancient drained lake basin, and primary surface that has not been reworked by thaw lake cycles. Measurements of total organic carbon (TOC) and total nitrogen (TN) content, stable carbon isotope ratios (δ13C) and radiocarbon (14C) analyses of bulk soils/sediments were conducted on 45 samples from 3 permafrost cores. Porewaters were extracted from these same core sections and used to measure salinity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), anion (Cl-, Br-, SO4 2-, NO3 -), and trace metal (Ca, Mn, Al, Ba, Sr, Si, and Fe) concentrations. Radiogenic strontium (87Sr/86Sr) was measured on a subset of porewater samples. Cores were also sampled for material property measurements such as dry bulk density, water content, and grain size fractions.