skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Yuzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a growing need for electricity-system flexibility to maintain real-time balance between energy supply and demand. In this paper, we explore optimal and incentive-compatible scheduling of generators for this purpose. Specifically, we examine a setting wherein each generator has a different operating cost if it is committed in advance (e.g., day- or hour-ahead) as opposed to being reserved as flexible real-time supply. We model an optimal division of generators between advanced commitment and real-time flexible reserves to minimize the expected cost of serving an uncertain demand. Next, we propose an incentive-compatible remuneration scheme with two key properties. First, the remuneration scheme incentivizes generators to reveal their true costs. Second, the scheme aligns generators’ incentives with the market operator’s optimal division of generators between advanced commitment and real-time reserve. We use a simple example to illustrate the market operator’s decision and the remuneration scheme. JEL Classification: C61, D47, D82, L94, Q4 
    more » « less
    Free, publicly-accessible full text available November 1, 2026