Studying coupling between different galactic components is a challenging problem in galactic dynamics. Using basis function expansions (BFEs) and multichannel singular spectrum analysis (mSSA) as a means of dynamical data mining, we discover evidence for two multicomponent disc–halo dipole modes in a Milky-Way-like simulated galaxy. One of the modes grows throughout the simulation, while the other decays throughout the simulation. The multicomponent disc–halo modes are driven primarily by the halo, and have implications for the structural evolution of galaxies, including observations of lopsidedness and other non-axisymmetric structure. In our simulation, the modes create surface density features up to 10 per cent relative to the equilibrium model stellar disc. While the simulated galaxy was constructed to be in equilibrium, BFE + mSSA also uncovered evidence of persistent periodic signals incited by aphysical initial conditions disequilibrium, including rings and weak two-armed spirals, both at the 1 per cent level. The method is sensitive to distinct evolutionary features at and even below the 1 per cent level of surface density variation. The use of mSSA produced clean signals for both modes and disequilibrium, efficiently removing variance owing to estimator noise from the input BFE time series. The discovery of multicomponent halo–disc modes is strong motivation for application ofmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT Stars born on near-circular orbits in spiral galaxies can subsequently migrate to different orbits due to interactions with non-axisymmetric disturbances within the disc such as bars or spiral arms. This paper extends the study of migration to examine the role of external influences using the example of the interaction of the Sagittarius dwarf galaxy (Sgr) with the Milky Way (MW). We first make impulse approximation estimates to characterize the influence of Sgr disc passages. The tidal forcing from Sgr can produce changes in both guiding radius ΔRg and orbital eccentricity, as quantified by the maximum radial excursion ΔRmax. These changes follow a quadrupole-like pattern across the face of the disc, with amplitude increasing with Galactocentric radius. We next examine a collisionless N-body simulation of a Sgr-like satellite interacting with an MW-like galaxy and find that Sgr’s influence in the outer disc dominates the secular evolution of orbits between disc passages. Finally, we use the same simulation to explore possible observable signatures of Sgr-induced migration by painting the simulation with different age stellar populations. We find that following Sgr disc passages, the migration it induces manifests within an annulus as an approximate quadrupole in azimuthal metallicity variations (δ[Fe/H]), along withmore »
-
ABSTRACT Gaia Data Release 2 revealed that the Milky Way contains significant indications of departures from equilibrium in the form of asymmetric features in the phase space density of stars in the Solar neighbourhood. One such feature is the z–vz phase spiral, interpreted as the response of the disc to the influence of a perturbation perpendicular to the disc plane, which could be external (e.g. a satellite) or internal (e.g. the bar or spiral arms). In this work, we use Gaia Data Release 3 to dissect the phase spiral by dividing the local data set into groups with similar azimuthal actions, Jϕ, and conjugate angles, θϕ, which selects stars on similar orbits and at similar orbital phases, thus having experienced similar perturbations in the past. These divisions allow us to explore areas of the Galactic disc larger than the surveyed region. The separation improves the clarity of the z–vz phase spiral and exposes changes to its morphology across the different action-angle groups. In particular, we discover a transition to two armed ‘breathing spirals’ in the inner Milky Way. We conclude that the local data contain signatures of not one, but multiple perturbations with the prospect to use their distinct propertiesmore »
-
Abstract In the era of large-scale spectroscopic surveys in the Local Group, we can explore using chemical abundances of halo stars to study the star formation and chemical enrichment histories of the dwarf galaxy progenitors of the Milky Way (MW) and M31 stellar halos. In this paper, we investigate using the chemical abundance ratio distributions (CARDs) of seven stellar halos from the Latte suite of FIRE-2 simulations. We attempt to infer galaxies’ assembly histories by modeling the CARDs of the stellar halos of the Latte galaxies as a linear combination of template CARDs from disrupted dwarfs, with different stellar masses M ⋆ and quenching times t 100 . We present a method for constructing these templates using present-day dwarf galaxies. For four of the seven Latte halos studied in this work, we recover the mass spectrum of accreted dwarfs to a precision of <10%. For the fraction of mass accreted as a function of t 100 , we find the residuals of 20%–30% for five of the seven simulations. We discuss the failure modes of this method, which arise from the diversity of star formation and chemical enrichment histories that dwarf galaxies can take. These failure cases can be robustlymore »Free, publicly-accessible full text available August 1, 2023
-
Similarities behind the high- and low- α disc: small intrinsic abundance scatter and migrating stars
ABSTRACT The detailed age-chemical abundance relations of stars measure time-dependent chemical evolution. These trends offer strong empirical constraints on nucleosynthetic processes, as well as the homogeneity of star-forming gas. Characterizing chemical abundances of stars across the Milky Way over time has been made possible very recently, thanks to surveys like Gaia, APOGEE, and Kepler. Studies of the low-α disc have shown that individual elements have unique age–abundance trends and the intrinsic dispersion around these relations is small. In this study, we examine and compare the age distribution of stars across both the high and low-α disc and quantify the intrinsic dispersion of 16 elements around their age–abundance relations at [Fe/H] = 0 using APOGEE DR16. We examine the age–metallicity relation and visualize the temporal and spatial distribution of disc stars in small chemical cells. We find: (1) the high-α disc has shallower age–abundance relations compared to the low-α disc, but similar median intrinsic dispersions of ∼0.03 dex; (2) turnover points in the age-[Fe/H] relations across radius for both the high- and low-α disc. The former constrains the mechanisms that set similar intrinsic dispersions, regardless of differences in the enrichment history, for stars in both disc, and the latter indicates the presence of radialmore »
-
Abstract Stellar streams from globular clusters (GCs) offer constraints on the nature of dark matter and have been used to explore the dark matter halo structure and substructure of our Galaxy. Detection of GC streams in other galaxies would broaden this endeavor to a cosmological context, yet no such streams have been detected to date. To enable such exploration, we develop the Hough Stream Spotter ( HSS ), and apply it to the Pan-Andromeda Archaeological Survey (PAndAS) photometric data of resolved stars in M31's stellar halo. We first demonstrate that our code can re-discover known dwarf streams in M31. We then use the HSS to blindly identify 27 linear GC stream-like structures in the PAndAS data. For each HSS GC stream candidate, we investigate the morphologies of the streams and the colors and magnitudes of all stars in the candidate streams. We find that the five most significant detections show a stronger signal along the red giant branch in color–magnitude diagrams than spurious non-stream detections. Lastly, we demonstrate that the HSS will easily detect globular cluster streams in future Nancy Grace Roman Space Telescope data of nearby galaxies. This has the potential to open up a new discovery space formore »
-
Abstract Signatures of vertical disequilibrium have been observed across the Milky Way’s (MW’s) disk. These signatures manifest locally as unmixed phase spirals in
z –v z space (“snails-in-phase”), and globally as nonzero meanz andv z , wrapping around the disk into physical spirals in thex –y plane (“snails-in-space”). We explore the connection between these local and global spirals through the example of a satellite perturbing a test-particle MW-like disk. We anticipate our results to broadly apply to any vertical perturbation. Using az –v z asymmetry metric, we demonstrate that in test-particle simulations: (a) multiple local phase-spiral morphologies appear when stars are binned by azimuthal actionJ ϕ , excited by a single event (in our case, a satellite disk crossing); (b) these distinct phase spirals are traced back to distinct disk locations; and (c) they are excited at distinct times. Thus, local phase spirals offer a global view of the MW’s perturbation history from multiple perspectives. Using a toy model for a Sagittarius (Sgr)–like satellite crossing the disk, we show that the full interaction takes place on timescales comparable to orbital periods of disk stars withinR ≲ 10 kpc. Hence such perturbations have widespread influence, which peaks in distinct regions of the disk at different times. This leads us to examine the ongoing MW–Sgr interaction. Whilemore » -
Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake andmore »
-
ABSTRACT In this work, we present two new ∼109 particle self-consistent simulations of the merger of a Sagittarius-like dwarf galaxy with a Milky Way (MW)-like disc galaxy. One model is a violent merger creating a thick disc, and a Gaia–Enceladus/Sausage-like remnant. The other is a highly stable disc which we use to illustrate how the improved phase space resolution allows us to better examine the formation and evolution of structures that have been observed in small, local volumes in the MW, such as the z−vz phase spiral and clustering in the vR−vϕ plane when compared to previous works. The local z−vz phase spirals are clearly linked to the global asymmetry across the disc: we find both 2-armed and 1-armed phase spirals, which are related to breathing and bending behaviours, respectively. Hercules-like moving groups are common, clustered in vR−vϕ in local data samples in the simulation. These groups migrate outwards from the inner galaxy, matching observed metallicity trends even in the absence of a galactic bar. We currently release the best-fitting ‘present-day’ merger snapshots along with the unperturbed galaxies for comparison.
-
ABSTRACT Our situation as occupants of the Milky Way (MW) Galaxy, bombarded by the Sagittarius dwarf galaxy, provides an intimate view of physical processes that can lead to the dynamical heating of a galactic disc. While this evolution is instigated by Sagittarius, it is also driven by the intertwined influences of the dark matter halo and the disc itself. We analyse an N-body simulation following a Sagittarius-like galaxy interacting with a MW-like host to disentangle these different influences during the stages of a minor merger. The accelerations in the disc plane from each component are calculated for each snapshot in the simulation, and then decomposed into Fourier series on annuli. The analysis maps quantify and compare the scales of the individual contributions over space and through time: (i) accelerations due to the satellite are only important around disc passages; (ii) the influence around these passages is enhanced and extended by the distortion of the dark matter halo; (iii) the interaction drives disc asymmetries within and perpendicular to the plane and the self-gravity of these distortions increase in importance with time eventually leading to the formation of a bar. These results have interesting implications for identifying different influences within our ownmore »