Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work explores the process of adapting the segmented attractor network to a lifelong learning setting. Taking inspirations from Hopfield networks and content-addressable memory, the segmented attractor network is a powerful tool for associative memory applications. The network's performance as an associative memory is analyzed using multiple metrics. In addition to the network's general hit rate, its capability to recall unique memories and their frequency is also evaluated with respect to time. Finally, additional learning techniques are implemented to enhance the network's recall capacity in the application of lifelong learning. These learning techniques are based on human cognitive functions such as memory consolidation, prediction, and forgetting.more » « less
-
This work reports a spiking neuromorphic architecture for associative memory simulated in a SPICE environment using recently reported gated-RRAM (resistive random-access memory) devices as synapses alongside neurons based on complementary metal-oxide semiconductors (CMOSs). The network utilizes a Verilog A model to capture the behavior of the gated-RRAM devices within the architecture. The model uses parameters obtained from experimental gated-RRAM devices that were fabricated and tested in this work. Using these devices in tandem with CMOS neuron circuitry, our results indicate that the proposed architecture can learn an association in real time and retrieve the learned association when incomplete information is provided. These results show the promise for gated-RRAM devices for associative memory tasks within a spiking neuromorphic architecture framework.more » « less
-
Abstract Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.more » « less
-
Abstract Protein kinase C (PKC) family members are multi‐domain proteins whose function is exquisitely tuned by interdomain interactions that control the spatiotemporal dynamics of their signaling. Despite extensive mechanistic studies on this family of enzymes, no structure of a full‐length enzyme that includes all domains has been solved. Here, we take into account the biochemical mechanisms that control autoinhibition, the properties of each individual domain, and previous structural studies to propose a unifying model for the general architecture of PKC family members. This model shows how the C2 domains of conventional and novel PKC isozymes, which have different topologies and different positions in the primary structure, can occupy the same position in the tertiary structure of the kinase. This common architecture of conventional and novel PKC isozymes provides a framework for understanding how disease‐associated mutations impair PKC function.