skip to main content

Search for: All records

Creators/Authors contains: "Jones, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields,more »and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.« less
    Free, publicly-accessible full text available August 1, 2023
  2. Context. The dynamics of the intracluster medium (ICM) is affected by turbulence driven by several processes, such as mergers, accretion and feedback from active galactic nuclei. Aims. X-ray surface brightness fluctuations have been used to constrain turbulence in galaxy clusters. Here, we use simulations to further investigate the relation between gas density and turbulent velocity fluctuations, with a focus on the effect of the stratification of the ICM. Methods. In this work, we studied the turbulence driven by hierarchical accretion by analysing a sample of galaxy clusters simulated with the cosmological code ENZO. We used a fixed scale filtering approach to disentangle laminar from turbulent flows. Results. In dynamically perturbed galaxy clusters, we found a relation between the root mean square of density and velocity fluctuations, albeit with a different slope than previously reported. The Richardson number is a parameter that represents the ratio between turbulence and buoyancy, and we found that this variable has a strong dependence on the filtering scale. However, we could not detect any strong relation between the Richardson number and the logarithmic density fluctuations, in contrast to results by recent and more idealised simulations. In particular, we find a strong effect from radial accretion, whichmore »appears to be the main driver for the gas fluctuations. The ubiquitous radial bias in the dynamics of the ICM suggests that homogeneity and isotropy are not always valid assumptions, even if the turbulent spectra follow Kolmogorov’s scaling. Finally, we find that the slope of the velocity and density spectra are independent of cluster-centric radii.« less
    Free, publicly-accessible full text available February 1, 2023
  3. We report on the possibility of studying the proprieties of cosmic diffuse baryons by studying self-gravitating clumps and filaments connected to galaxy clusters. While filaments are challenging to detect with X-ray observations, the higher density of clumps makes them visible and a viable tracer to study the thermodynamical proprieties of baryons undergoing accretion along cosmic web filaments onto galaxy clusters. We developed new algorithms to identify these structures and applied them to a set of non-radiative cosmological simulations of galaxy clusters at high resolution. We find that in those simulated clusters, the density and temperature of clumps are independent of the mass of the cluster where they reside. We detected a positive correlation between the filament temperature and the host cluster mass. The density and temperature of clumps and filaments also tended to correlate. Both the temperature and density decrease moving outward. We observed that clumps are hotter, more massive, and more luminous if identified closer to the cluster center. Especially in the outermost cluster regions (∼3⋅ R 500,  c or beyond), X-ray observations might already have the potential to locate cosmic filaments based on the distribution of clumps and to allow one to study the thermodynamics of diffuse baryonsmore »before they are processed by the intracluster medium.« less
  4. ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$), we find a relatively modest average projected offset of $|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$  = 0.61 ± 0.08 proper kpc for the entire sample. A small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$) showed offsets a factor of three greater than their fainter counterparts ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activitymore »appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations.« less