skip to main content

Search for: All records

Creators/Authors contains: "Jumpponen, Ari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities.

    Results

    In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass,Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome ofAndropogon gerardiiunder drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest – MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas,which might be associated with enhanced drought tolerance and growth forAndropogon gerardii.

    Conclusions

    Our data indicated thatmore »the metagenome-assembled MAG-Pseudomonashas the functional potential to contribute to the plant host’s growth during stressful conditions. Our study also suggested the nitrogen transformation potential ofMAG-Pseudomonasthat could impactAndropogon gerardiigrowth in a positive way. The cultivation of MAG-Pseudomonassets the foundation to construct a successful synthetic community forAndropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonascould place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonasand its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.

    « less
  2. ABSTRACT

    Fire can impact terrestrial ecosystems by changing abiotic and biotic conditions. Short fire intervals maintain grasslands and communities adapted to frequent, low-severity fires. Shrub encroachment that follows longer fire intervals accumulates fuel and can increase fire severity. This patchily distributed biomass creates mosaics of burn severities in the landscape—pyrodiversity. Afforded by a scheduled burn of a watershed protected from fires for 27 years, we investigated effects of woody encroachment and burn severity on soil chemistry and soil-inhabiting bacteria and fungi. We compared soils before and after fire within the fire-protected, shrub-encroached watershed and soils in an adjacent, annually burned and non-encroached watershed. Organic matter and nutrients accumulated in the fire-protected watershed but responded less to woody encroachment within the encroached watershed. Bioavailable nitrogen and phosphorus and fungal and bacterial communities responded to high-severity burn regardless of encroachment. Low-severity fire effects on soil nutrients differed, increased bacterial but decreased fungal diversity and effects of woody encroachment within the encroached watershed were minimal. High-severity burns in the fire-protected watershed led to a novel soil system state distinct from non-encroached and encroached soil systems. We conclude that severe fires may open grassland restoration opportunities to manipulate soil chemistry and microbial communities inmore »shrub-encroached habitats.

    « less
  3. Young, Vincent B. (Ed.)
    ABSTRACT Mosquito larvae encounter diverse assemblages of bacteria (i.e., “microbiota”) and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus , is the dominant mosquito species in the United States andmore »an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control.« less
  4. Vries, Franciska (Ed.)
  5. Abstract Plant, soil, and aquatic microbiomes interact, but scientists often study them independently. Integrating knowledge across these traditionally separate subdisciplines will generate better understanding of microbial ecological properties. Interactions among plant, soil, and aquatic microbiomes, as well as anthropogenic factors, influence important ecosystem processes, including greenhouse gas fluxes, crop production, nonnative species control, and nutrient flux from terrestrial to aquatic habitats. Terrestrial microbiomes influence nutrient retention and particle movement, thereby influencing the composition and functioning of aquatic microbiomes, which, themselves, govern water quality, and the potential for harmful algal blooms. Understanding how microbiomes drive links among terrestrial (plant and soil) and aquatic habitats will inform management decisions influencing ecosystem services. In the present article, we synthesize knowledge of microbiomes from traditionally disparate fields and how they mediate connections across physically separated systems. We identify knowledge gaps currently limiting our abilities to actualize microbiome management approaches for addressing environmental problems and optimize ecosystem services.
  6. Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788–1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian Mountains of southwestern North Carolina and eastern Tennessee. We measured soil chemistry (total N, C, extractable PO4, soil pH, cation exchange capacity [ECEC], percent base saturation [% BS]) and dissected soil fungal communities using ITS2 metabarcode Illumina MiSeq sequencing. Total soil N, C, PO4, % BS, and pH increased with elevation and plateaued at approximately 1400 m, whereas ECEC linearly increased and C/N decreased with elevation. Fungal communities differed among locations and were correlated with all chemical variables, except PO4, whereas OTU richness increased with total N. Several ecological guilds (i.e., ectomycorrhizae, saprotrophs, plant pathogens) differed in abundance among locations; specifically, saprotroph abundance, primarily attributable to genus Mortierella, was positively correlated with elevation. Ectomycorrhizae declined with total N and soil pH and increased with total C and PO4 where plant pathogens increased with total N and decreased with total C. Our results demonstrate significant turnover in taxonomic and functional fungal groups across elevational gradientsmore »which facilitate future predictions on forest ecosystem change in the southern Appalachians as nitrogen deposition rates increase and regional temperature and precipitation regimes shift.« less