Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phase transitions happen at critical values of the controlling parameters, such as the critical temperature in classical phase transitions, and system critical parameters in the quantum case. However, true criticality happens only at the thermodynamic limit, when the number of particles goes to infinity with constant density. To perform the calculations for the critical parameters, a finite-size scaling approach was developed to extrapolate information from a finite system to the thermodynamic limit. With the advancement in the experimental and theoretical work in the field of ultra-cold systems, particularly trapping and controlling single atomic and molecular systems, one can ask: do finite systems exhibit quantum phase transition? To address this question, finite-size scaling for finite systems was developed to calculate the quantum critical parameters. The recent observation of a quantum phase transition in a single trapped 171 Yb+ ion indicates the possibility of quantum phase transitions in finite systems. This perspective focuses on examining chemical processes at ultra-cold temperatures, as quantum phase transitions—particularly the formation and dissociation of chemical bonds—are the basic processes for understanding the whole of chemistry.more » « less
-
As the year-to-year gains in speeds of classical computers continue to taper off, computational chemists are increasingly examining quantum computing as a possible route to achieve greater computational performance. Quantum computers, built upon the properties of superposition, interference, and entanglement of quantum bits, offer, in principle, the possibility to outperform classical computers for solving many important classes of problems. In the field of chemistry, quantum algorithm development offers promising propositions for solving classically intractable problems in areas such as electronic structure, chemical quantum dynamics, spectroscopy, and cheminformatics. However, physical implementations of quantum computers are still in their infancy and have yet to outperform classical computers for useful computations. Still, quantum software development for chemistry is a highly active area of research. In this perspective, we summarize recent progress in the areas of quantum computing algorithms, hardware, and software, and we describe the challenges that remain for useful implementations of quantum computing for chemical applications.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Efficient methods for encoding and compression are likely to pave the way toward the problem of efficient trainability on higher-dimensional Hilbert spaces, overcoming issues of barren plateaus. Here, we propose an alternative approach to variational autoencoders to reduce the dimensionality of states represented in higher dimensional Hilbert spaces. To this end, we build a variational algorithm-based autoencoder circuit that takes as input a dataset and optimizes the parameters of a Parameterized Quantum Circuit (PQC) ansatz to produce an output state that can be represented as a tensor product of two subsystems by minimizing Tr(ρ2). The output of this circuit is passed through a series of controlled swap gates and measurements to output a state with half the number of qubits while retaining the features of the starting state in the same spirit as any dimension-reduction technique used in classical algorithms. The output obtained is used for supervised learning to guarantee the working of the encoding procedure thus developed. We make use of the Bars and Stripes (BAS) dataset for an 8 × 8 grid to create efficient encoding states and report a classification accuracy of 95% on the same. Thus, the demonstrated example provides proof for the working of the method in reducing states represented in large Hilbert spaces while maintaining the features required for any further machine learning algorithm that follows.more » « less
-
Abstract How fast a state of a system converges to a stationary state is one of the fundamental questions in science. Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution, called the cutoff phenomenon. Here, we examine how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state. We find that random quantum states, as stationary states of random walks on a unitary group, are invariant under the quantum Fourier transform (QFT). Thus the entropic uncertainty of random quantum states has balanced Shannon entropies for the computational basis and the QFT basis. By calculating the Shannon entropy for random quantum states and the Wasserstein distances for the eigenvalues of random quantum circuits, we show that the cutoff phenomenon occurs for the random quantum circuit. It is also demonstrated that the Dyson-Brownian motion for the eigenvalues of a random unitary matrix as a continuous random walk exhibits the cutoff phenomenon. The results here imply that random quantum states could be generated with shallow random circuits.more » « less
-
Perturbation theory, used in a wide range of fields, is a powerful tool for approximate solutions to complex problems, starting from the exact solution of a related, simpler problem. Advances in quantum computing, especially over the past several years, provide opportunities for alternatives to classical methods. Here, we present a general quantum circuit estimating both the energy and eigenstates corrections that is far superior to the classical version when estimating second-order energy corrections. We demonstrate our approach as applied to the two-site extended Hubbard model. In addition to numerical simulations based on qiskit, results on IBM’s quantum hardware are also presented. Our work offers a general approach to studying complex systems with quantum devices, with no training or optimization process needed to obtain the perturbative terms, which can be generalized to other Hamiltonian systems both in chemistry and physics.more » « less
-
Abstract Most existing quantum algorithms are discovered accidentally or adapted from classical algorithms, and there is the need for a systematic theory to understand and design quantum circuits. Here we develop a unitary dependence theory to characterize the behaviors of quantum circuits and states in terms of how quantum gates manipulate qubits and determine their measurement probabilities. Compared to the conventional entanglement description of quantum circuits and states, the unitary dependence picture offers more practical information on the measurement and manipulation of qubits, easier generalization to many-qubit systems, and better robustness upon partitioning of the system. The unitary dependence theory can be applied to systematically understand existing quantum circuits and design new quantum algorithms.more » « less