skip to main content

Search for: All records

Creators/Authors contains: "Kane, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate which patterns of lexically triggered doxastic, bouletic, neg(ation)-raising, and veridicality inferences are (un)attested across clause-embedding verbs in English. To carry out this investigation, we use a multiview mixed effects mixture model to discover the inference patterns captured in three lexicon-scale inference judgment datasets: two existing datasets, MegaVeridicality and MegaNegRaising, which capture veridicality and neg-raising inferences across a wide swath of the English clause-embedding lexicon, and a new dataset, MegaIntensionality, which similarly captures doxastic and bouletic inferences. We focus in particular on inference patterns that are correlated with morphosyntactic distribution, as determined by how well those patterns predict themore »acceptability judgments in the MegaAcceptability dataset. We find that there are 15 such patterns attested. Similarities among these patterns suggest the possibility of underlying lexical semantic components that give rise to them. We use principal component analysis to discover these components and suggest generalizations that can be derived from them.« less
    Free, publicly-accessible full text available January 5, 2023
  2. Objective: Communication difficulties negatively impact relationship quality and are associated with social isolation and loneliness in later life. There is a need for accessible communication interventions offered outside specialty mental health settings. Design: Pilot randomized controlled trial. Setting: Assessments in the laboratory and intervention completed in-home. Participants: Twenty adults age 60 and older from the community and a geriatric psychiatry clinic. Intervention: A web-based communication coach that provides automated feedback on eye contact, facial expressivity, speaking volume, and negative content (Aging and Engaging Program, AEP), delivered with minimal assistance in the home (eight brief sessions over 4–6 weeks) or controlmore »(education and videos on communication). Measurements: System Usability Scale and Social Skills Performance Assessment, an observer-rated assessment of social communication elicited through standardized role-plays. Results" Ninety percent of participants completed all AEP sessions and the System Usability Scale score of 68 was above the cut-off for acceptable usability. Participants randomized to AEP demonstrated statistically and clinically significant improvement in eye contact and facial expressivity. Conclusion: The AEP is acceptable and feasible for older adults with communication difficulties to complete at home and may improve eye contact and facial expressivity, warranting a larger RCT to confirm efficacy and explore potential applications to other populations, including individuals with autism and social anxiety.« less
    Free, publicly-accessible full text available August 1, 2022
  3. In this paper, we describe the iterative participatory design of SOPHIE, an online virtual patient for feedback-based practice of sensitive patient-physician conversations, and discuss an initial qualitative evaluation of the system by professional end users. The design of SOPHIE was motivated from a computational linguistic analysis of the transcripts of 383 patient-physician conversations from an essential office visit of late stage cancer patients with their oncologists. We developed methods for the automatic detection of two behavioral paradigms, lecturing and positive language usage patterns (sentiment trajectory of conversation), that are shown to be significantly associated with patient prognosis understanding. These automatedmore »metrics associated with effective communication were incorporated into SOPHIE, and a pilot user study identified that SOPHIE was favorably reviewed by a user group of practicing physicians.« less
  4. There is growing evidence that the prevalence of disagreement in the raw annotations used to construct natural language inference datasets makes the common practice of aggregating those annotations to a single label problematic. We propose a generic method that allows one to skip the aggregation step and train on the raw annotations directly without subjecting the model to unwanted noise that can arise from annotator response biases. We demonstrate that this method, which generalizes the notion of a mixed effects model by incorporating annotator random effects into any existing neural model, improves performance over models that do not incorporate suchmore »effects.« less
  5. Task-oriented dialogue-based spatial reasoning systems need to maintain history of the world/discourse states in order to convey that the dialogue agent is mentally present and engaged with the task, as well as to be able to refer to earlier states, which may be crucial in collaborative planning (e.g., for diagnosing a past misstep). We approach the problem of spatial memory in a multi-modal spoken dialogue system capable of answering questions about interaction history in a physical blocks world setting. We employ a pipeline consisting of a vision system, speech I/O mediated by an animated avatar, a dialogue system that robustlymore »interprets queries, and a constraint solver that derives answers based on 3D spatial modelling. The contributions of this work include a semantic parser competent in this domain and a symbolic dialogue con- text allowing for interpreting and answering free-form historical questions using world and discourse history.« less
  6. A physical blocks world, despite its relative simplicity, requires (in fully interactive form) a rich set of functional capabilities, ranging from vision to natural language understanding. In this work we tackle spatial question answering in a holistic way, using a vision system, speech input and output mediated by an animated avatar, a dialogue system that robustly interprets spatial queries, and a constraint solver that derives answers based on 3-D spatial modeling. The contributions of this work include a semantic parser that maps spatial questions into logical forms consistent with a general approach to meaning representation, a dialogue manager based onmore »a schema representation, and a constraint solver for spatial questions that provides answers in agreement with human perception. These and other components are integrated into a multi-modal human-computer interaction pipeline.« less