skip to main content

Search for: All records

Creators/Authors contains: "Kaur, Upinder"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sensors in and around the environment becoming ubiquitous has ushered in the concept of smart animal agriculture which has the potential to greatly improve animal health and productivity using the concepts of remote health monitoring which is a necessity in times when there is a great demand for animal products. The data from in and around animals gathered from sensors dwelling in animal agriculture settings have made farms a part of the Internet of Things space. This has led to active research in developing efficient communication methodologies for farm networks. This study focuses on the first hop of any such farm network where the data from inside the body of the animals is to be communicated to a node dwelling outside the body of the animal. In this paper, we use novel experimental methods to calculate the channel loss of signal at sub-GHz frequencies of 100 - 900 MHz to characterize the in-body to out-of-body communication channel in large animals. A first-of-its-kind 3D bovine modeling is done with computer vision techniques for detailed morphological features of the animal body is used to perform Finite Element Method based Electromagnetic simulations. The results of the simulations are experimentally validated to come upmore »with a complete channel modeling methodology for in-body to out-of-body animal body communication. The experimentally validated 3D bovine model is made available publicly on GitHub. The results illustrate that an in-body to out-of-body communication channel is realizable from the rumen to the collar of ruminants with $\leq {90}~{\rm dB}$ path loss at sub-GHz frequencies ( $100-900~MHz$ ) making communication feasible. The developed methodology has been illustrated for ruminants but can also be used for other related in-body to out-of-body studies. Using the developed channel modeling technique, an efficient communication architecture can be formed for in-body to out-of-body communication in animals which paves the way for the design and development of future smart animal agriculture systems.« less
    Free, publicly-accessible full text available October 10, 2023
  2. Free, publicly-accessible full text available August 1, 2023
  3. Continuous real-time health monitoring in animals is essential for ensuring animal welfare. In ruminants like cows, rumen health is closely intertwined with overall animal health. Therefore, in-situ monitoring of rumen health is critical. However, this demands in-body to out-of-body communication of sensor data. In this paper, we devise a method of channel modeling for a cow using experiments and FEM based simulations at 400 MHz. This technique can be further employed across all frequencies to characterize the communication channel for the development of a channel architecture that efficiently exploits its properties.
  4. ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the samemore »domain; whereas in the domain-transfer scenario, the training data are a blend of simulated and real robot data, which are tested on a real robot. Results Using simulation data to train the learning algorithms enhances the performance on the real robot where limited or no real data are available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-tosimulated data were 22% to 78%. For the Taurus II and the da Vinci, the model showed an accuracy of 97.5% and 93%, respectively, training only with simulation data. Conclusions The results indicate that simulation can be used to augment training data to enhance the performance of learned models in real scenarios. This shows potential for the future use of surgical data from the operating room in deployable surgical robots in remote areas.« less