skip to main content

Search for: All records

Creators/Authors contains: "Kays, Roland"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Urbanization often results in biodiversity loss and homogenization, but this result is not universal and there is substantial variability in the spatiotemporal effects of urbanization on wildlife across cities and taxa. Areas with lower population and housing density are some of the fastest-growing regions in the western United States; thus, more research in these areas could offer additional insight into the effects of urbanization on wildlife and the potential importance of wild spaces in maintaining a diverse biotic community surrounding developed areas. To address this need, we conducted a study to identify the effects of urbanization (i.e. housing density) on mammals along a housing density gradient from wilderness to suburbia in Missoula, Montana. We deployed 178 motion-activated trail cameras at random sites within urban/suburban, exurban, rural, and wild regions from May to October 2019 to 2020. We identified all mammals >150 g, then evaluated how housing density influenced: (i) occupancy and (ii) species richness using multispecies occupancy models; (iii) relative abundance using Poisson models; and (iv) diel activity patterns using kernel density estimation and logistic regression. Urbanization was the strongest driver of mammal distribution, with a linear decline in mammal species richness as housing density increased. Urbanization also had strong effects on occupancy and detection rates, with larger-bodied mammals generally having stronger negative associations. Overall, mammal relative abundance was highest in suburban regions; however, this effect was largely driven by White-tailed Deer. Natural environmental factors explained most changes in mammal nocturnal activity; however, urbanization strongly affected nocturnality in some species, with Black Bear and White-tailed Deer becoming more nocturnal and Red Fox and Northern Raccoon becoming less nocturnal as housing density increased. While our study confirms that some mammals can live and thrive in developed areas, it emphasizes the importance of maintaining wild areas for those species that cannot.

    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge gaps by comparing CT records of terrestrial mammals and birds from the recently released Wildlife Insights platform to publicly available occurrences from many observation types in the Global Biodiversity Information Facility. In locations with CTs, we found they sampled a greater number of days (mean = 133 versus 57 days) and documented additional species (mean increase of 1% of expected mammals). For species with CT data, we found CTs provided novel documentation of their ranges (93% of mammals and 48% of birds). Countries with the largest boost in data coverage were in the historically underrepresented southern hemisphere. Although embargoes increase data providers' willingness to share data, they cause a lag in data availability. Our work shows that the continued collection and mobilization of CT data, especially when combined with data sharing that supports attribution and privacy, has the potential to offer a critical lens into biodiversity. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’. 
    more » « less
    Free, publicly-accessible full text available July 17, 2024
  4. Abstract

    Small mammals are important to the functioning of ecological communities with changes to their abundances used to track impacts of environmental change. While capture–recapture estimates of absolute abundance are preferred, indices of abundance continue to be used in cases of limited sampling, rare species with little data, or unmarked individuals. Improvement to indices can be achieved by calibrating them to absolute abundance but their reliability across years, sites, or species is unclear. To evaluate this, we used the US National Ecological Observatory Network capture–recapture data for 63 small mammal species over 46 sites from 2013 to 2019. We generated 17,155 absolute abundance estimates using capture–recapture analyses and compared these to two standard abundance indices, and three types of calibrated indices. We found that neither raw abundance indices nor index calibrations were reliable approximations of absolute abundance, with raw indices less correlated with absolute abundance than index calibrations (raw indices overall R2 < 0.5, index calibration overall R2 > 0.6). Performance of indices and index calibrations varied by species, with those having higher and less variable capture probabilities performing best. We conclude that indices and index calibration methods should be used with caution with a count of individuals being the best index to use, especially if it can be calibrated with capture probability. None of the indices we tested should be used for comparing different species due to high variation in capture probabilities. Hierarchical models that allow for sharing of capture probabilities over species or plots (i.e., joint-likelihood models) may offer a better solution to mitigate the cost and effort of large-scale small mammal sampling while still providing robust estimates of abundance.

    more » « less
  5. Abstract

    Resource selection functions (RSFs) are among the most commonly used statistical tools in both basic and applied animal ecology. They are typically parameterized using animal tracking data, and advances in animal tracking technology have led to increasing levels of autocorrelation between locations in such data sets. Because RSFs assume that data are independent and identically distributed, such autocorrelation can cause misleadingly narrow confidence intervals and biased parameter estimates.

    Data thinning, generalized estimating equations and step selection functions (SSFs) have been suggested as techniques for mitigating the statistical problems posed by autocorrelation, but these approaches have notable limitations that include statistical inefficiency, unclear or arbitrary targets for adequate levels of statistical independence, constraints in input data and (in the case of SSFs) scale‐dependent inference. To remedy these problems, we introduce a method for likelihood weighting of animal locations to mitigate the negative consequences of autocorrelation on RSFs.

    In this study, we demonstrate that this method weights each observed location in an animal's movement track according to its level of non‐independence, expanding confidence intervals and reducing bias that can arise when there are missing data in the movement track.

    Ecologists and conservation biologists can use this method to improve the quality of inferences derived from RSFs. We also provide a complete, annotated analytical workflow to help new users apply our method to their own animal tracking data using thectmm Rpackage.

    more » « less
  6. Abstract Background Bio-logging and animal tracking datasets continuously grow in volume and complexity, documenting animal behaviour and ecology in unprecedented extent and detail, but greatly increasing the challenge of extracting knowledge from the data obtained. A large variety of analysis methods are being developed, many of which in effect are inaccessible to potential users, because they remain unpublished, depend on proprietary software or require significant coding skills. Results We developed MoveApps, an open analysis platform for animal tracking data, to make sophisticated analytical tools accessible to a global community of movement ecologists and wildlife managers. As part of the Movebank ecosystem, MoveApps allows users to design and share workflows composed of analysis modules (Apps) that access and analyse tracking data. Users browse Apps, build workflows, customise parameters, execute analyses and access results through an intuitive web-based interface. Apps, coded in R or other programming languages, have been developed by the MoveApps team and can be contributed by anyone developing analysis code. They become available to all user of the platform. To allow long-term and cross-system reproducibility, Apps have public source code and are compiled and run in Docker containers that form the basis of a serverless cloud computing system. To support reproducible science and help contributors document and benefit from their efforts, workflows of Apps can be shared, published and archived with DOIs in the Movebank Data Repository. The platform was beta launched in spring 2021 and currently contains 49 Apps that are used by 316 registered users. We illustrate its use through two workflows that (1) provide a daily report on active tag deployments and (2) segment and map migratory movements. Conclusions The MoveApps platform is meant to empower the community to supply, exchange and use analysis code in an intuitive environment that allows fast and traceable results and feedback. By bringing together analytical experts developing movement analysis methods and code with those in need of tools to explore, answer questions and inform decisions based on data they collect, we intend to increase the pace of knowledge generation and integration to match the huge growth rate in bio-logging data acquisition. 
    more » « less
  7. Moratelli, Ricardo (Ed.)
    Abstract While museum voucher specimens continue to be the standard for species identifications, biodiversity data are increasingly represented by photographic records from camera traps and amateur naturalists. Some species are easily recognized in these pictures, others are impossible to distinguish. Here we quantify the extent to which 335 terrestrial nonvolant North American mammals can be identified in typical photographs, with and without considering species range maps. We evaluated all pairwise comparisons of species and judged, based on professional opinion, whether they are visually distinguishable in typical pictures from camera traps or the iNaturalist crowdsourced platform on a 4-point scale: (1) always, (2) usually, (3) rarely, or (4) never. Most (96.5%) of the 55,944 pairwise comparisons were ranked as always or usually distinguishable in a photograph, leaving exactly 2,000 pairs of species that can rarely or never be distinguished from typical pictures, primarily within clades such as shrews and small-bodied rodents. Accounting for a species geographic range eliminates many problematic comparisons, such that the average number of difficult or impossible-to-distinguish species pairs from any location was 7.3 when considering all species, or 0.37 when considering only those typically surveyed with camera traps. The greatest diversity of difficult-to-distinguish species was in Arizona and New Mexico, with 57 difficult pairs of species, suggesting the problem scales with overall species diversity. Our results show which species are most readily differentiated by photographic data and which taxa should be identified only to higher taxonomic levels (e.g., genus). Our results are relevant to ecologists, as well as those using artificial intelligence to identify species in photographs, but also serve as a reminder that continued study of mammals through museum vouchers is critical since it is the only way to accurately identify many smaller species, provides a wealth of data unattainable from photographs, and constrains photographic records via accurate range maps. Ongoing specimen voucher collection, in addition to photographs, will become even more important as species ranges change, and photographic evidence alone will not be sufficient to document these dynamics for many species. 
    more » « less