A hallmark of concentrated suspensions is non-Newtonian behavior, whereby the viscosity increases dramatically once a characteristic shear rate or stress is exceeded. Such strong shear thickening is thought to originate from a network of frictional particle–particle contact forces, which forms under sufficiently large stress, evolves dynamically, and adapts to changing loads. While there is much evidence from simulations for the emergence of this network during shear thickening, experimental confirmation has been difficult. Here, we use suspensions of piezoelectric nanoparticles and exploit the strong local stress focusing within the network to activate charge generation. This charging can then be detected in the measured ac conductance and serve as a signature of frictional contact formation. The direct link between stress-activated frictional particle interactions and piezoelectric suspension response is further demonstrated by tracking the emergence of structural memory in the contact network under oscillatory shear and by showing how stress-activated friction can drive mechano-transduction of chemical reactions with nonlinear reaction kinetics. Taken together, this makes the ac conductance of piezoelectric suspensions a sensitive in-situ reporter of the micromechanics associated with frictional interactions.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Weitz, David (Ed.)Free, publicly-accessible full text available December 5, 2024
-
When employed in a dense suspension, dynamic covalent chemistry between particles and the suspending medium leads to tunable chemical friction. This chemical friction mimics physical friction but is stickier, leading to tunable rheopexy.
Free, publicly-accessible full text available September 13, 2024 -
Abstract Mineralization is a long-lasting method commonly used by biological materials to selectively strengthen in response to site specific mechanical stress. Achieving a similar form of toughening in synthetic polymer composites remains challenging. In previous work, we developed methods to promote chemical reactions via the piezoelectrochemical effect with mechanical responses of inorganic, ZnO nanoparticles. Herein, we report a distinct example of a mechanically-mediated reaction in which the spherical ZnO nanoparticles react themselves leading to the formation of microrods composed of a Zn/S mineral inside an organogel. The microrods can be used to selectively create mineral deposits within the material resulting in the strengthening of the overall resulting composite.